NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A267 403 “ - DTIC

ATGINGTR o S ELECTE D
AUG4 1993

THESIS

Design And Implementation of an
Interface Editor for the
Amadeus Multi-Relational Database
Front-end System
by
James Phillip Hargrove
March 1993
Thesis Advisor: C. Thomas Wu
Second Reader: LCDR John A. Daley, USN

Approved for public release; distribution is unlimited.

93-17445
lllﬂillh“ﬂ'ﬂlﬂllllflﬂlllllllllﬂll 29079 93 8 3 001

i

 DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

]

UNCLASSIHIED

SECURITY CLASSIFICATION OF THIS PAGE
—

REPORT DOCUMENTATION PAGE

72 REPORT SECURITY CUASSIF RESTAICTIVE MARKINGS
a CATON " UNCLASSIFIED | ™
2a SECURITY CLASSIFICATION AUTRORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT |

Approved for public release;
distribution is unlimited

m 5. MONITORING ORGANIZATION REFORT NUMBER(S)

85, OFFICE SYMBOL | 7a. NAME OF MONTTORING ORGANIZATON |
(it ‘PP"C‘;"“) Naval Postgraduate School

omputer Science Dept.
Naval Postgraduate School
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

%a NA) 5. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER |
ORGANIZATION (it applicable)
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
"PROGR [PROJECT |

AL W [WORKUNIT |
ELEMENT NO. NO. NO. ACCESSION NO.

11, TITLE (Include Security Classification)
DESIGN AND IMPLEMENTATION OF AN INTERFACE EDITOR FOR THE AMADEUS MULTI-RELATIONAL DATABASE

FRONT-END SYSTEM (V)

%Es?gr%}s“gﬁﬂﬂghargmve, USN

3a T FEPORT 13b. TIME COVERED . DATE OF REPORT (Year, Month, 5. PAGE COUNT
Maister's Thesis erom 02/01 03/93. | TG EA353T REPORT (Yea: Honth. D&y 286
YNOTATION The views expressed 1n this thesis are those ol the author and do not reflect the otficial policy or
position of the Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
o o B.GROUP OBJECT-ORIENTED PROGRAMMING, USER INTERFACE DESIGN, PROGRAPH,
LD GROUP SUBGROUP | vISUAL PROGRAMMING, FORM-BASED INTERFACE, DATABASE SYSTEMS

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis extends the Graphical User Interface of a prototype multi-relational database front-end system, called
Amadeus. System enhancements are realized through the application of Object-Orniented Programming (OOP) and
Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has been incorporated into
the design and implementation of a Form-based interface for database data entry and display.

The focus of this thesis is divided between two issues: the development of a set of tools for creating and using Form
objects; and the design of the Form object itself. Form creation is accomplished using an application program calicd
the Interface Editor module. The Interface Editor is one of six modules which, together, compnse the Amadeus sys-
tem. Form manipulation occurs in a second application which implements basic program methods for controlling data
entry and display processes.

Design and implementation of this thesis was accomplished using the Prograph programming language and devel-
opment environment, which provided a basic set of system classes essential to the implementation of the Form object
and Graphical User Interfaces.

0. DISTRIBUTION/AVAILABILITY OF ABSTHACT 27, ABSTRACT SECURITY CUASSIFICATION

[UNCLASSIFIEDAUNLIMITED [T] SAME AS RPT. [] DTIC USERS | UNCLASSIFIED

S A L A 225 TELEPHONE {Inchude Area Code) |225, QEFIGE SYMED
Professor C. Thomas Wu (408) 656-2174 u
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are Me UNCLASSIFIED
i

Approved for public release; distribution is unlimited

Design and Implementation of an Interface Editor for the
Amadeus Multi-Relational Database Front-end System

by
James Phillip Hargrove
Lieutenant Commander, United States Navy
BA, University of California, Berkeley, 1981

Submitted in partial fulfiliment cf the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March, 1993
Author: _;_,7/.2 ”
S Jame}?ﬁﬁp Hargrove

Approved By: m
C. Thomas Wu,/’l‘he;istdvisor

n A? Daley, U?(Second Reader

CDR Gary USN)Chalrman
Department of Computer Science

ABSTRACT

This thesis extends the Graphical User Interface of a prototype multi-relational data-
base front-end system, called Amadeus. System enhancements are realized through the ap-
plication of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI)
design principles. Knowledge gained from each topic has been incorporated into the design
and implementation of a Form-based interface for database data entry and display.

The focus of this thesis is divided butween two issues: the development of a set of tools
for creating and using Form objects; and the design of the Form object itself. Form creation
is accomplished using an application program called the Interface Editor module. The In-
terface Editor is one of six modules which, together, comprise the Amadeus system. Form
manipulation occurs in a second application which implements basic program methods for
controlling data entry and display processes.

Design and implementation of this thesis was accomplished using the Prograph pro-
gramming language and development environment, which proVided a'basic set of system
classes essential to the implementation of the Form object and the Graphical User Interfac-

es developed for this thesis.

Accesion For a
NTIS cm&v—#\
DTIC TaAB o

Unannmmced D
Justitication

G -

By
Distribution |

—

DTIC QUALITY rNSPECTED 3 Avaiabiity Codes

i Avall andfer
Oist Specal

| |

TABLE OF CONTENTS

1. INTRODUCTION 1
II. TERMINOLOGY, BACKGROUND AND BASIC CONCEPTS 4
A. HIGH-LEVEL PROGRAMMING LANGUAGES ..o, 4

B. VISUAL PROGRAMMINGcocivimimriieiniiincntienisre st 4

C. OBJECT-ORIENTED PROGRAMMINGcccoiivvimnimininiciiniccinccicncnins 5

" 1. Data Hiding (ENCapSUlation)c.eeerereurmrenincerceerermanenssinesssmeissenaseeeeeseses 5

2. Classes and ODJECLScocovvrvvirrrimssvrssevcsiirsiirsisiniissesriessaeosesesesssss s sssensees 6

3. MESSAZESoonierirmiiriiieiii et b e er e e st aaees 6

4. INKEMIANCE ... coeeeiiriciiittit ettt e e 6

5. POlYMOIPIISINoviniiiiiiiiiiticert et 8

D. DATAFLOW DIAGRAMS & DATAFLOW PROGRAMMINGccocennen. 8

1. Dataflow DIagramsccccoveimmniiiinniiin it s 8

2. Dataflow Programmingcccccoverecuiiiiiiniieiniinines et seseees e s e enansenns 8

E. PROGRAPH ..ooooviirieeteentnie ittt enectcstenasas e ssns savs st saas s s st st s en s 9

1. Application BUlldercooooiiiiniiiieee e 10

F. DATAFLOW QUERY LANGUAGEcccooiiiiiniicinciieee 11

G. AMADEUS ...ttt sttt s s sr s e s 13

1. Database ENGINEccoviiriiiiinirccnince sttt 15

2. Interface EditOrcccovvivinimiiiiiccteecccnicntencc e 15

3. Database EItOrcccooviiiiiiiiieici et 15

4. Relation Editorcc.coovivieriinieciinieeneiesenientine e e 15

5. QUETY EdIOTcueoneiiiiitiiiicictic ettt s 15

6. Program EditOrcoooiiiiniiiiiicitceenr e 16

HI. HUMAN-COMPUTER INTERFACE DESIGN ISSUES 17
A. INTRODUCTIONcociiiiiiiiniieireee it sr e s e s s sr e enes 17

1. A Brief HISIOTY ...cooveivereieerice ittt eecseneesente sttt e 17

B. TYPES OF USER INTERFACES ..o 19

1. Command Languages and the Command Line Interface................................ 19

iv

2. Graphical User INTEITACESc..ccvevuecerinreerineeeneeeertne e ccee e sres e 21

3. Direct Manipulationc.oceeccrvreeenieenienniinennrecteete et ste e eseeeessee s eseenee 22

C. EVALUATION AND USEABILITY OF USER INTERFACEScccceceue. 22
L. EVAIUALON ...cooiiiiiiiiiieiiintesrine ettt sttt e s seee e e e beset s e e e se e et es e sree e 22

2. USADIIILY c.oveeeveeieereceinterieretesserirst e sesseeste e s e ste s aone e ssbe st s s ensaensassassasasesnrnens 23

D. DIALOG DESIGNcotiiiiiitirietcectt ittt sre et e et ceie e s se e ss s e eieene 23
1. Dialog Design RUIEScc.ooouiieiivennieeiececeseee st e e arr s e e s 24

2. USer Feedbackccoceiiimiininninieeieceietccntie st eresaae st e s 25
IV. DESIGN AND IMPLEMENTATION 27
A. DEVELOPMENT PROCESScocenmieertiriirneeiesteieseeseeeee s e s e e seense e 27
B. USER INTERFACE CONSIDERATIONScccoceniiininenenaeneeeeene e neene 28
C. THE INTERFACE EDITORcccoovtiitiiiiriienreteeeerteciere e seeee st seeene 29
1. Program Control DECISIONScecceeeieereeriienieeiecitenseeereeenaereee s e esareesenenns 29

2. ICON DESIZN ...ttt et ettt ettt st e sre e s e e e e se e en 30

3. ENG-USET VIEWSoouuiiiiieiiiiertaene e eees e seeeeeesntrsee e seesrasssnesn e ssnssnsesacs 31

4. Class DESCIIPUONSccccevtremrererieitestineeeiiectnt et e sereer st ebe e srneseaesaesneans 31

5. USErINMEIfaceccccuiiiininteeeninnineitcceiestet e st s e s ss e 33

2. Menu Commandsc...eoiueeueeeieennceiiieene et 34

b. The IO Bar ...t e e 35

6. WINAOWS ...ttt ettt ettt et sr et s e be e e st nns 36

a. The Design Form Windowcccoeeceviniiinincnns. et sa s 38

b. Edit FOrm Windowcocveiiiieniiiiiniccenteeeeeteee et v 41

C. TabOrder WINdOWcomiiiiiiicttie et e 42

d. The Help WINAowcccvviiiiiinniiiiiiece s 44

e. Field Information Windowc.ccccoiniiiencinnnnnnnennciie e 45

D. THE FORM USE APPLICATIONcccoooimiinniinieniecere et 46
1. Program Control DeCiSIONScccocerveerticiirntineerenieneeeee et 46

2. Class DESCIIPLONSc.cevieuurieerirretetentinieree et s e seee s e eeaseceenas e 46

3. USer INterfaceccoueoi ittt s 48

Q. WINAOWS ..ottt eeseessres et st e et st es s saas st smn e s en e saneenbe s 48

a. Input Form WINAOWccccoviiiciniiniciiinintcicnetee e e 48

b. Display FOrm WINAOWccccvviiniiiniinniiiii ettt 49

E. THE FORM OBUJECT ...t inentsteeeeeessesstssse st s ssss s e 50

1. FOMM ODJECL ...ttt sttt st ente et et s s 50

2. FIeld ObJECL ...ttt ettt r ettt st s s 51

3. WINAOWS ...cciniieieieieeirecce st nre et es st aessee e ee et seas st e ssaesse et s saseessees e eeemeennneennen 52

4, USETr INEIACHONccvviieuiiiniinrtiieeesree e renie ettt eree et s ens s neaesaneeraeens 52

5. FOrm MEhOAScooviriiiirirecienret it ettt s e s e se et sns s 52

6. Data Validalion........cocueiieiininreeneeeienecetese et ettt eeesereesnee et seeceeesaasseees 52

7. INPUL FOTM ..ottt e sr et 53

8. Display FOMM ..ottt e 53

9. Form Creation and Editingcccceeeeiviiiiiiinninniinieniecsece e 53
FOFOIM USE....eiceiiiiiecettre ettt sttt s 53

A, INPUL FOMMS ..ottt ettt st 54

b. Display FOMISooooiriiieerieniriet ittt 58

V. CONCLUSIONS & RECOMMENDATIONS FOR FURTHER RESEARCH ..61
A. SUMMARY ottt st srt sttt ssas et ee e saae e soe s st et s becasesaneer e nes 61

B. CONCLUSIONS ...ttt s g sesensse s sns e s ernas s 61

C. SUGGESTIONS FOR FURTHER RESEARCHcccociiiininiiis 62
APPENDIX A (DEVELOPMENT NOTES) ..65
APPENDIX B (PROGRAPH BASICS) 68
APPENDIX C (DATABASE BASICS) 76
APPENDIX D (INTERFACE DESIGN GOALS AND CONCERNS) ...cccveceeceseacenns 78
APPENDIX E (PROGRAM LISTINGS) 82
REFERENCES 274
INITIAL DISTRIBUTION LIST 277

ACKNOWLEDGEMENTS

I would like to thank the following persons for their advice, assistance and
. encouragement during the course of this thesis research: Professor C. Thomas Wu, LCDR
John A. Daley, USN, LCDR Kim L. Kotlar, USN, LT Robert S. Lovejoy, USN, LCDR

Andy Melton, USN and 1LT Turgay Cince, Turkish Army.

vii

I. INTRODUCTION

This thesis investigates two separate topics, object-oriented programming and
Human-Computer Interface (HCI) design. Knowledge gained from each is applied to the
design of a Form-based interface for database data entry and display to be used in
conjunction with a new relational database query language called Dataflow Query
Language (DFQL). Central to the Form-based interface is the design of a Form object
which is an abstract representation of a computer generated Form (and its component
parts). Forms of various types are common in everyday life. Examples include income tax
forms, questionnaires, job applications, invoices and order forms. Form-based interfaces
are p.pular for database applications since they extend the paper form by creating a new
computer metaphor for these familiar objects. Users are thus able to manipulate form
images through a Graphical User Interface (GUI) in a similar manner as they would a paper
form. This ability greatly assists user interaction with the system, since users see a display
of all related fields and have a feeling of control over the data entry process
[Schneiderman92 page 71; pages 132~133]. Additionally, few instructions are necessary
since the computer-displayed form so closely resembles familiar paper forms
[Schneiderman92 page 132].

The Form-based interface discussed above actually consists of two separate
applications: The Interface Editor module and the Form Use application program. The

Interface Editor is one of six modules which, together, comprise a prototype multi-

relational database front-end system called Amadeus.! The purpose of the Interface Editor
module is to provide users with a tool for creating and editing custom data entry and display
Forms for use by Amadeus’ Query Editor module. The Query Editor uses the DFQL query

language for database manipulation, providing an “improved interface to the relational

1. Amadeus and DFQL will be discussed further in Chapter I1.

model of database management” [Clark91 p. 25]. Forms are used in conjunction with
DFQL queries to make d1ta entry and display more efficient for the system user.

The Interface cantor module is a stand-alone application program which is intended to
be used separately from the Amadeus database definition and manipulation modules. This
senaiation results in important advantages:

1. First, a clear distinction between Form creation and use is realized, simplifying the
user interfaces for both the Interface Editor and other Amadeus modules.

2. Secondly, separating the Interface Editor functions from the remainder of the Amadeus
modules keeps application size to a minimum while supporting general object-
oriented programming goals by assisting in modular program development, testing
and debugging.

The Form Use application program is used to validate the Interface Editor’s Form
creation capability, and incorporates control functions for displaying and controlling Form
objects used for data entry and display. The component parts of the Form Use application
will ultimately become part the Amadeus Query Editor module, which contains query
editing and execution methods for the entire system. The Query Editor module is currently
the topic of another thesis project, and integration of the Form Use functions will be

accomplished as part of that work.

All design and programming for this thesis was accomplished using the Prograph™2
programming language and development environment. Prograph is a visual language based
on the dataflow paradigm. Since Prograph uses the Macintosh ROM-based toolbox and
operating system managers, the Interface Editor and Form Use interfaces take on a
distinctive Macintosh “look and feel”.

Prograph language features relating to program development and source code listings
for this thesis are discussed in Chapter II and Appendix B. Relevant Human Computer

Interface design and implementation issues are discussed in Chapter IIl. The design and

2. Prograph is a trademark of The Gunakara Sun Systems, Lid.

implementation of the Form object, Interface Editor and Form Use application are detailed
in Chapter V. Chapter V provides a summary of this *4esis, complete with conclusions and
recommendations for further research. Source code listings for the Interface Editor and

Form Use applications are contained in Appzndix E.

II. TERMINOLOGY, BACKGROUND AND BASIC CONCEPTS

This chapter provides background information on the Prograph programming
language and development environment, DFQL and the Amadeus system. Each of these
concepts will be discussed briefly. An introduction to the Prograph language will then be
presented to assist in the interpretation of code listings found in Appendix E. Finally,
DFQL and Amadeus will be described. Additional information on these subjects may be

found in Appendices B and C.

A. HIGH-LEVEL PROGRAMMING LANGUAGES

One way of classifying a programming language is by the language’s level of
abstraction. A language is considered higher-level than another if it can express a program
with less detail than the second language. This means that a high-level language enables a
programmer to concentrate more on what is to be done and less on how to do it
[MacLennar87 p. 485-486]. The authors of Prograph assert that it is a “very high level”
language. This implies that Prograph is about as far removed from machine language as is
practical, and is more abstract than traditional high-level programming languages such as

Ada, Fortran or Pascal.

B. VISUAL PROGRAMMING
S. K. Chang describes two general categories of visual languages: those that process
visual information and those that make use of visual expression (known as Visual

Programming Languages). Languages that are used to process visual information are

usually traditional, linear languages that have been specifically enhanced to handle visual

information or objects. Visual Programming Languages, on the other hand, deal with
objects which are not normally expressed visually, but which are themselves visual in

nature. Prograph is a example of a visual, very high-level programming language.

C. OBJECT-ORIENTED PROGRAMMING

Object-Oriented Programming (OOP) differs from traditional procedural
programming by the way in which data and action are treated. In procedural programming,
data and action are treated separately. Typically, data structures are first defined, and then
a set of procedures are developed to manipulate the data structures. With OOP, however,
action and délta are closely coupled (i.e., data and the actions associated with the data are
defined together).

This section discusses the general characteristics of Object-Oriented Programming

Languages (OOPLs), and defines basic terms and concepts.

1. Data Hiding (Encapsulation)

Data hiding is a process by which data can only be accessed by code which is
specifically associated with the data. Data hiding is also called encapsulation because data
and its associated code are placed together in a package or “capsule”. Encapsulation is an
important feature of OOP languages, and is also incorporated into certain procedural
languages such as Modula-2 and Ada. By encapsulating code and data, the programmer
guarantees that portions of a program which do not relate to specific data remain separate,
and cannot access that data.

Data hiding aids in modular program construction, since details of the inner
workings of a package are not required by anything outside of the package. When applied
properly, modular program design enables packages (modules) to be added, modified or
removed from a program with no impact on other modules. This is generally not the case
with procedural languages which do not support encapsulation. In such languages, making

a change to one part of a program may impact other parts of the program, producing a

“ripple” effect of program and data dependencies. Encapsulation has been implemented in
the design of both programs developed for this thesis. Portions of the Interface Editor have
been incorporated into the Form Use application, which will, itself, ultimately be

incorporated into the Amadeus Query Editor.

2. Classes and Objects

An object is an entity that contains data and an associated set of actions that
operate on the data. Every object belongs to a class, which defines the implementation of
a particular kind of object. An individual object of a class is referred to as an instance of
the class. Classes can be thought of as templates for creating objects.

In object-onented programming, when a class is created, attributes and methods
are defined for the class. Attributes are a type of place holder for a specific value. Objects
may have zero, one or many attributes. Methods represent known behaviors of instances of
a class, and are roughly analogous to subroutines in more traditional languages. [TGS90b
p- 146, TGS90c p. 4, Symantec91 p. 19-20] The objects, classes and methods developed as
part of this thesis are discussed in Chapter IV.

3. Messages
In object-oriented programming, objects communicate with other objects by
sending and receiving messages. Messages are analogous to sub-routine calls in a
procedural programming language, and are used to tell an object to perform a specific

action.

4. Inheritance

New classes can be defined in terms of existing classes through a process called
inheritance. The new class is called a subclass or child, and the existing class (from which
the subclass was defined) is called a superclass or the parent class. A subclass inherits all
of the attributes and methods of its parent class. The parent, in turn, may have inherited

attributes and methods from its parent class. A class inherits the combined attributes and

methods of its ancestors. However, a subclass does not actually copy this information.
Rather, it refers to the information as a parent class or superclass [Smith91 p. 65].
Subclasses are normally created when a new class is needed which differs slightly
from an existing class. This is possible because a subclass can have its own attributes and
methods not contained in the parent class. Prograph supplies a core of system-defined
classes that describe Macintosh interface data structures such as menus, windows and
window items. Subclasses of these system classes are developed by the programmer to

define specific program actions. Figure 1 shows the Prograph System Class Hierarchy.

@ Classes
us
Canvas Click item
&
Edit Text Button Radio Set Check Box Graphiec
& &
Scroll Text Pop- Menu Pict lcon 3‘
@ [

Figure 1: The Prograph System Class Hierarchy

5. Polymorphism
Simply stated, polymorphism allows the same message to be sent to objects of
different classes. Each object invokes a method appropriate for its particular class [Smith91
p. 8, 109; TGS90b, p. 93]. Using the Macintosh Finder as an example, the effect of the
Open command depends on the icon which’has been selected. If a folder icon is selected, a
folder is opened. If an application icon is selected, the application is opened. In effect, an
Open message is being sent to various Finder objects, with each object applying its own

Open method, as appropriate. [Symantec91 p. 22-23]

D. DATAFLOW DIAGRAMS & DATAFLOW PROGRAMMING

1. Dataflow Diagrams
A dataflow diagram is a modeling tool that is used extensively in operations
research and computer science as an aid in systems analysis and design. A dataflow
diagram makes use of distinct graphical symbols to convey meaning, is inherently visually

oriented and is closely related to the directed graph.

2. Dataflow Progfamming

Dataflow programming is a natural extension of the dataflow diagram. A dataflow
program is itself a dataflow diagram, so this type of programming allows the construction
of two-dimensional graphical dataflow models that are directly translatable into computer
executable instructions. Thus, a dataflow program is, simultaneously, a system model and
an executable program.

Dataflow programming does not impose a specific ordering on program events.
Rather, data can be thought of as actively flowing throughout a program, triggering events
in a non-sequential manner as various data dependencies are satisfied, and corresponding

program instructions are executed. This active flow of data implies more than one

instruction can be evaluated simultaneously, making dataflow programming inherently

concurrent. [TGS90b]

E. PROGRAPH
Prograph is an object-oriented, graphic programming language and development
environment that supports the entire software design process. Prograph consists of the
following integrated components [TGS90a p. 1]:
(1) pictorial language,
(2) graphic editor/interpreter development environment,
(3) Application Builder object-oriented interface building toolkit, and
(4) 680x0 code compiler
Prograph’s visual environment makes it different from other programming languages.
The language syntax is entirely pictorial, with text used only for comments and assigning
names to objects, classes, methods, etc. Code for Prograph applications are composed of a
series of dataflow diagrams consisting of operations (represented by icons) connected by
datalinks. Data flows into an operation at a terminal node located at the top of the operation
icon, and flows out of an operation from a root node located at the bottom of the operation
icon. Datalinks provide the paths along which data flows into and out of operations.
Dataflow diagrams in Prograph are displayed in case windows. Figure 2 shows a typical
case window.
Prograph, as implemented on the uni-processor Macintosh, does not support
concurrency. Although the Macintosh’s uni-processor architecture limits program
execution to a single instruction at a time, there is no sequential ordering placed on the

execution of operations in a Prograph program. Therefore, the overall character of a

dataflow program is preserved.

Banner -_—-—* ;—— Case Controls

=== P2 case window 1:| BRI =Rz

4
7227727777 7777777778~ =% Input Bar
Local a
Method
- Operator
Operator
- w/Control
‘. Terminal
Z{process data
- Root
- Datalink
- Output Bar

Figure 2: Prograph Case Window

1. Application Builder
Prograph incorporates an object-oriented, graphical application-interface toolkit
(the Application Builder) which seamlessly integrates the Prograph development
environment with the Macintosh ROM-based Toolbox ! and operating system managers
[TGS90a, TGS90b). Traditional User Interface Management Systems or Interface Toolkits,
which separate the user interface from the application program, require a complex,

sequential edit-link-compile-run cycle whenever changes are made to an application.

1. The Macintosh Toolbox is a collection of low-level routines that implement the Macintosh oper-
ating system and user interface. See also [Apple85).

10

However, since Prograph’s Application Builder facilities are an extension of the editor and
interpreter, a dynamic run-edit-design-run program development cycle is employed which
significantly reduces application development time. Thus, the Application Builder
provides a seamless integration between the processes for developing user interfaces and
the classes and methods that implement the fundamental behavior of the application itself
[TGS90b p. 215-216}.

F. DATAFLOW QUERY LANGUAGE

The Dataflow Query Language (DFQL) is a visual, relational algebra which is used to
manipulate relational databases. Like Prograph, DFQL is a dataflow language, possessing
sufficient expressive power and functionality to allow a user to easily express database
queries. DFQL operators are constructed using three basic components: input nodes, a body
and output nodes. These components correspond to the Prograph constructs terminal, node
and root, respectively, and possess the same underlying principles and characteristics as
their Prograph counterparts. Figure 3 compares three DFQL primitive operators with their
equivalent Structured Query Language (SQL) queries. SQL has become the de facto
industry standard query language for relational Database Management Systems (DBMS’).
However, SQL has problems with both its design and implementation [Codd88a, pages 45-
48, Codd88b pages 71-74, Codd90]. DFQL was developed to “allow users to achieve the
maximum utility from the relational model” by providing an “improved interface to the
relational model of database management” [Clark91 pagel; page 25].

DFQL operators can be grouped into two basic categories: primitive and user-defined.
Primitive operators have a one-to-one correspondence with methods in the implemematibn
language of the interpreter. User-defined operators are created from primitive operators and
possibly other user-defined operators which have been created previously. This provides a
great deal of freedom and flexibility when constructing queries, since commonly used

queries can be combined into compact, user-defined queries, eliminating the need to re-

11

construct them each time they are needed. Figure 4 shows a sample DFQL query, involving

both primitive and user-defined operators. Additional database concepts are briefly

discussed in Appendix C.

SELECT DISTINCT *
FROM relation
WHERE condition

SELECT DISTINCT *
FROM relation 1, r1, relation2, r2
WHERE join condition

SELECT DISTINCT *
FROM relation1
UNION

SELECT DISTINCT *
FROM relation2

Figure 3: DFQL Primitive Operators and Their Corresponding SQL Queries

12

Construct User-defined Operator “SELECT-PROJECT™:

relation condition
condition relation
o #
saved as
output of
operator is
arelation

Construct DFQL Query using Primitive & User-Defined Operators

condition
U

relation condition

- —p Primitive Operator

G —» User-defined Operator

Figure 4: DFQL Query using Primitive and User-Defined Operators

G. AMADEUS

SQL has become the de facto industry standard query language for Relational
Database Management Systems. Although ANSI and ISO standards exist for SQL, each
RDBMS vendor normally supports its own SQL dialect. This presents a problem for the

13

| SE——

user of a multiple back-end? RDBMS, since SQL queries for one RDBMS may not
necessarily run on a second RDBMS. A single front-end system that can act as an interface
between users and assorted back-end RDBMS is required. Amadeus is a prototype for such
a system, which takes an object-oriented approach for federating relational databases. The
objectives of Amadeus are [Wu91 pages 8-9]:

1. Provide an easy to use, yet powerful common language for accessing different types

of RDBMS, and
2. Shield the complexity of the underlying RDBMS.

Figure 5 compares the traditional DBMS arrangement and Amadeus.

=]
U Amadeus 7 %
User <g—yppt Front-end SCF@— Eront-end \ 8
DB2

Relational
I xBase |

Database
Traditional RDBMS with Single Back-end Database| Amadeus & Multiple Back-end Databases

Figure 5: Comparison of Traditional DBMS and Amadeus

The key features of Amadeus are its use of the DFQL high-level visual query language
and an object-oriented architecture. By using DFQL as the front-end query language, users
do not have to learn different dialects for each RDBMS connected to the system. Rather,
DFQL provides a consistent, easy-to-use visual front-end interface for each back-end

RDBMS. Additionally, the object-oriented design of Amadeus ensures an easy to modify,

2. Typically, a DBMS is separated into two distinct parts: the ‘front-end” or user interface, and the
“back-end” which comprises the actual database. A multiple back-end system allows users to con-
nect to a number of different DBMS’ from a single front-end.

14

extensible system, which is demonstrated by the designs of both the Interface Editor
module and Form Use application. Amadeus is composed of a number of modules which

can be tailored to support individual user requirements. The six modules include:

1. Database Engine
This module performs all database operations by either carrying out the
operations internally (by using the kernel database engine) or by delegating the operations
to a back-end RDBMS. In the latter case, generated SQL statements are passed to the back-
end for processing. Each supported RDBMS has its own corresponding Amadeus database
engine module (e.g., Oracle database engine, Ingres database engine, DB2 database engine,

etc).

2. Interface Editor

The Interface Editor module is used to design input forms, output screen displays
and hardcopy reports. The Interface Editor allows or disallows certain types of control
objects according to the types supported by the connected RDBMS. The design and

implementation of the Interface Editor module comprises a major portion of this thesis.

3. Database Editor
The Database Editor module is used to define and modify databases. This module

adjusts itself to allow different access controls to each database, depending on the

connected back-end RDBMS.

4. Relation Editor

The Relation Editor module is used for defining and modifying relations. The
module allows users to define relations according to the rules of the connected back-end

RDBMS.

5. Query Editor .

The Query Editor module is used to perform all aspects of database operations.
The module allows identical DFQL diagrams to be used for querying different connected

15

back-end RDBMS. Since each RDBMS employs its own dialect of SQL, the Query Editor
gener .tes appropriate SQL statements tailored to the connected RDBMS. All of this is
transparent to the user who is formulating the query. Forms created by the Interface Editor
module are used by the Query Editor to support data input and output (display). Objects
required for data input, display and type checking have been developed and implemented
as part of this thesis, and will ultimately be integrated into the Query Editor.

6. Program Editor
The Program Editor module is used for creating database application programs.

The module is not yet implemented.

16

III. HUMAN-COMPUTER INTERFACE DESIGN ISSUES

A. INTRODUCTION
This chapter provides a brief discussion of Human-Computer Interface (HCI) design
issues relevant to the design and implementation of the Interface Editor module and Form
Use application program. Additional HCI issues are discussed in Appendix D.
Human-Computer Interface (HCI) design is a constantly evolving, multi-disciplinary
field of study that focuses on computer systems and the way in which people interact with
them. Contributions from the fields of computer science, human factors, psychology,

graphic arts and education, play an essential role in the HCI design process. The field is

relatively new!, and is being influenced “by the tide of development - by the persistent
flood of hardware and software products in the marketplace, and by the changing nature of

how they are created, purchased and put into use.” [Winograd90, p. 443]

1. A Brief History

Grudin identifies evolutionary stages of user interfaces by describing the
following five levels of user interface focus. These levels correspond to general
characteristics of user interfaces at various evolutionary stages, from the 1950’s (level one)
into the future (stages four and five) [Grudin90 p. 261-265]:

1. The interface as hardware.
2. The interface as software
3. The interface as terminal.
4. The interface as dialogue.

5. The interface as work setting.

1. The Association of Computing Machinery (ACM) held its first conference on Computer and Human
Interaction (CHI) in 1981. The ACM special interest group on Computer-Human Interaction (SIGCHI) was
founded shortly thereafter, and held its first annual conference in 1983.

17

The first user interfaces were developed in the 1950’s, and were tied directly to
computer hardware. This did not present a problem, since engineers were the primary users
of computers and were quite comfortable working at the machine-level. In the 1960’s and
1970’s, user interfaces began taking on forms which better assisted computer programmers.
These new interfaces included high-level programming languages, operating systems,
compilers, debuggers and assemblers. During this period (level two), the standard teletype
was the preferred means of communicating with a computer. Bit-mapped graphics and
cathode-ray tubes (CRTs) gradually replaced the more primitive interface devices, but for
the most part, the governing concept of the time remained “the ‘friendliest’ user interface
was the briefest user interface” [Ambler89 p. 19].

The proliferation of the personal computer in the mid-1980’s saw the emergence
of new computer markets aimed at the non-prcgrammer. This was accompanied by a shift
of focus in user interfaces towards visual displays and interactive computing systems (level
three). This focus is intact today; is dominated by research into basic perceptual and
cognitive processing issues [Grudin90 p. 264], and influences the design of the interfaces
developed for this thesis.

The last two levels of user interface focus (levels four and five) involve more
abstract concepts and relationships. At these levels interface actors, agents, dialogs and
Virtual Reality/Virtual Environments enter into the realm of user interface design.
Specifically, level four involves a higher-level cognitive focus and attempts to model end-
user goals and plans, develop a sense of dialogue with the user, and create adaptive user
interfaces. Level Five is directed towards the work se:' ng. where computers are expected
to play an important role in supporting group working cnvironments. Examples of such
“groupware” systems include electronic mail, co-authorship, distributed project
management and group decision support. [Grudin90 p. 264-265]

The five levels of interface focus are summarized in the following table

{Grudin90 p. 265]:

18 -

Table 1: SUMMARY OF THE DISTINCTIONS ACROSS LEVELS OF INTERFACE FOCUS

Level 1 Level 2 Level 3 Level 4 Level §
Interface as Interface as Interface as Interface as Interface as
hardware software terminal dialogue work setting
e e
Principal Engineers/ Programmers | End users End users Groups of
users programmers End users
Human factors | Cognitive
Interface Electrical Computer cognitive psychology, Social psych.,
specialist engineering science psych cognitive anthropology,
disciplines graphic design | science, (dra- | organizational,
matic arts?) etc.
Largely infor- | Largely infor- | Laboratory Wizard of Oz, | Ethnographic,
Research mal mal experiment thinking contextual,
Methods aloud, data participant
capture observer
Duration of Microseconds/ | Milliseconds/ | Seconds Minutes Days
basic events hours hours
studied
Cost of Lowest Low Moderate High Highest
evaluation
Precision, Highest High Moderate Low Lowest
generality
Major focus 1950's 1960's-1970’s | 1970’s-1990’s | 1980’s- 1990’s-

B. TYPES OF USER INTERFACES

1. Command Languages and the Command Line Interface

Command languages originated with operating system commands, and can be

distinguished by their immediacy and by their impact on devices or information

[Schneiderman92 p 144]. Commands are generally brief, transitory and produce an

immediate result on some object of interest. Command languages can be extended

somewhat through the use of macros which allow constructing reusable sequences of

commands. Command languages may consist of single commands or have complex syntax.
Operations may number into the thousands.

The command-line interface was the dominant form of user interface until the
early-1980’s. Despite its recognized problems (including the potential for increasing
cognitive load by requiring a user to memorize a potentially large set of (not necessarily

logical) commands, flags, formats and associated syntax) the command-line interface

survives today in many popular systems 2, One reason for this is simplicity. The command-
line interface is not as dependent upon high-speed computer architecture as are Graphical
User Interfaces (GUI). Additionally, command-line interfaces are relatively easy to
program. However, this does not necessarily translate into an intuitive, easy to use
interface, as evidenced by the following Unix command which blanks lines from a file:
GREP -V *$FILEA > FILEB

Schneiderman provides the following summary of command languages in

[Schneiderman92 pp. 174-175]:

Command languages can be attractive when frequent use of a system is anticipated,
users are knowledgeable about the task domain and computer concepts, screen space is
at a premium, response time and display rates are slow, and numerous functions that
can be combined in many ways are supported. Users have to learn the semantics and
syntax, but they can initiate rather than respond, rapidly specifying actions involving
several objects and options.

While command languages are appropriate for certain types of interfaces, they are
inappropriate for the implementation of the Interface Editor module and Form Use
application. The desired interface must be able to represent real-world objects (Forms) in
a graphical environment, and allow manipulation of these objects in much the same way as

a real-world Form object is manipulated. This requires a Graphical User Interface.

2. MS-DOS and Unix are examples of command-line based interfaces which still enjoy wide populanity
today.

20

2. Graphical User Interfaces

In the command-line interface, the user was restricted to working only with
textual information. The evolution of hardware (and accompanying software) technology
enabled researchers to move beyond the confines of the text-based interface by translating
familiar every-day objects into the Human-Computer Interface. For the first time, users
could manipulate information on a computer monitor in much the same way as they did in
the real-world. The computer screen became a metaphor for a desktop which contained
windows, icons, menus and other graphical objects. The concept of What-Y ou-See-Is-
What-You-Get (WYSIWYG) was introduced in word-processing, so that the
representation of a page on a computer screen was identical, in nearly every respect, to the
printed output. Multiple windows could be overlaid onto the desktop. Each window could
be a terminal (or shell) on the computer, a terminal onto another machine, or the interface
to a software application (such as word-processing/desktop publishing, database,
spreadsheet, or graphics design packages). [Schneiderman92 page 198; Locke page 11]

There are two major consequences (from a user’s perspective) of the graphical
user interface. The first is that the user is more isolated from the operating system, and is
better able to concentrate directly on performing a task rather than having to interact with
the operating system in order to perform the task. For example, to open a file in a graphical
interface a user might select the document by clicking on its icon with a mouse key. The
underlying operating system commands for opening the document are invoked by the
interface. In a command-line interface, operating system commands to open the document
are invoked explicitly by the user.

Secondly, the graphical interface lead to the concept of consistency, whereby
certain properties of an application program’s user interface possess predictable
characteristics and behaviors. Thus, a consistent interface is one in which specific
commands always result in the same action(s) and produce the same result(s). The Interface

Editor module presents a consistent interface for designing and editing Form objects.

21

3. Direct Manipulation

Direct manipulation refers to a type of graphical user interface in which the user
operates on a representation of the objects(s) of interest [Schneiderman92 p. 33]. Typically,
some type of a pointing device (such as a mouse, track-ball or pen and tablet) are employed
to permit user interaction with objects which appear on the computer screen. The Interface

Editor module employs a direct manipulation interface, which is discussed in Chapter VI.

C. EVALUATION AND USEABILITY OF USER INTERFACES

This section presents evaluation guidelines and usability parameters which have been
incorporated into the design of the Interface Editor module and Form Use application.
Usability parameters tend to reflect a user’s attitude towards a specific interface, while

evaluation guidelines outline key principles for good HCI design.

1. Evaluation
Jakob Nielsen proposes the following four methods for evaluating a user interface
[Nielsen90a): formally, automatically, empirically and heuristically. Of these methods, the
heuristic method has been applied to the design of the interfaces developed for this thesis.
Heuristic evaluation essentially entails looking at an interface and deciding what
is good and what is bad about it. To be consistent the evaluation should be based on a set
of established guidelines which, in practice, can easily number in the hundreds or
thousands. This is especially true if the guidelines define a specific interface standard. In
order to make the heuristic evaluation process more manageable, Nielsen and Molich
propose using the following set of heuristics which were chosen for their ability 1o explain
a large proportion of the problems encountered in interface designs [Nielsen90a].
1. Simple and natural dialogue
2. Speak the user’s language

3. Minimize user memory load>

4. Be consistent

22

S. Provide feedback

6. Provide clearly marked exits
7. Provide shortcuts

8. Good citor messages

9. Prevent errors

2. Usability
Nielsen discusses five generally accepted usability parameters for computer

systems while applying them specifically to hypertext® systems. [Nielsen 90b] These five
parameters are:

1. Easy to learn. A new user can quickly get some work done with the system.

2. Efficient to use. Once a user becomes familiar with the system, a high level of
productivity is possible.

3. Easy to remember. After an absence from the system, the average user can quickly
get back “up to speed” on the system with little effort or re-training required.

4. Few errors. Use of the system does not in itself promote errors. A user can easily
recover from an error if/when one occurs and the system must be immune to
catastrophic errors.

5. Pleasant to use. Users like using the system (or, possibly more common, users do not

dread using the system).

D. DIALOG DESIGN

Dialog is essential to the successful interface design for interactive systems. Dialog

encompasses everything related to a user’s interaction with a system, including user input

3. Studies of human information processing indicate that human channel capacity or processing power
is limited to roughly 2.5 bits of information, which translates to about seven (plus or minus two) items.

4. Hypertext refers to a text system consisting of non-sequeatial text nodes and connecting links.

23

and command selection, system feedback (such as alert, error and status messages) and

system error handling.

1. Dialog Design Rules

Schneiderman provides the following Eight Golden Rules of Dialog Design:

[Schneiderman92 pages 72-74] which have been incorporated, to varying degrees, into the

design of the user interface developed for this thesis.

1.

Strive for consistency. Consistent sequences of actions should be required in similar
situations; identical terminology should be used in prompts, menus and help screens;
consistent commands should be employed throughout. The interface which controls
Form design and editing in the Interface Editor module are essentially identical,
presenting a consistent interface. Help windows are identical, although the topics for
each window differ depending on the window (Design Form, Edit Form, Tab Order,

Form View) which the user is currently working in.

. Enable frequent users to use shortcuts. This is supported in the Interface editor by

the inclusion of command keys and an icon bar (discussed in chapter 1V).

. Offer informative feedback. For every operator action, there should be some system

feedback. Each action in the Interface Editor and Form Use applications provides
some form of user feedback. Icon Buttons invert when selected, dialogs sound an alert
when activated, the name of the active Form (in the Form View window) changes as

a Form is opened or closed.

. Design dialogs to yield closure. Sequences of actions should be organized into groups

with a beginning, middle, and end. This principle is incorporated into the command

sequence required to design and edit a Form object.

. Offer simple error handling. Design the system so the user can’t make a serious

error. The system should be able to detect errors and offer simple, comprehensible

mechanisms for handling the error.

6. Permit easy reversal of actions. As much as possible, actions should be reversible.
This is the most difficult rule to implement. Reversal of actions is permitted only to a
limited extent in the Interface Editor module. Users have the option of saving or

> discarding (without saving) Forms from the Design Form window. While editing a
Form, changes can be discarded without saving (essentially reversing a sequence of
editing commands). Certain actions, such as deleting a Form from disk, can not be
reversed.

7. Support internal locus of control. Users want to feel in control. Surprising system
actions, tedious sequences of data entries, incapacity or difficulty in obtaining
necessary information, and the inability to produce the action desired all build anxiety
and dissatisfaction.

8. Reduce short-term memory load. Keep displays simple. Offer on-line help and
assistance to the user. A simple on-line help system has been implemented in the
Interface Editor and Form Use applications. Additionally, program control features

have been kept to a minimum without sacrificing the power and flexibility of the

interface.

2. User Feedback

System feedback should be concise, descriptive and informative. A user should
not have to question the meaning of a system-generated error or status message. Interfaces
which isolate a user from the underlying operating system (such as the Macintosh Finder)
have the potential to confuse a user with poorly phrased dialogs which assume (or require)
intimate knowledge of the operating system. The user feedback features of the Interface
Editor and Form Use applications have been designed to avoid this type of problem. In
addition to the eight rules of dialog design listed in the last section, system feedback to the

user (including alerts, dialogs, prompts and error messages) for these two interfaces also

includes the following guidelines [Apple85]:

1. Use plain language.

2. Use an active voice.

3. Phrase messages so that they are unambiguous.

4. Use icons whenever possible. Graphics can describe some errors better than words,
and familiar icons can help users better distinguish their alternatives.

5. Dialogs should be informative, widir.g enough information to enable the user to take
the appropriate action.

6. Never refer the user to external documentation for further clarification.

26

IV. DESIGN AND IMPLEMENTATION

A. DEVELOPMENT PROCESS

The Prograph programming environment lends itself extremely well to both structured
and evolutionary development processes [TGS90b, pages 230-231]. Structured
development is normally associated with a “top-down” design strategy employing a
structured, analytic approach to system design. Program code is not written until the project
has been completely specified. All documentation associated with the system (e.g.,
requirements, design and test documents as well as the actual program code), is rigorously
maintained. Any changes to the system are implemented in a manner similar to the original
design effort, and can be considered 2 mini-development process.

Evolutionary development, on the other hand, is usually associated with creative
prototyping styles such as those found in research settings where the goal is to explore new
ideas without being bound by rigid documentation and specification rules. Thus, changes
can be made quickly and easily.

Prograph’s seamless editor/interpreter environment provides the tools necessary to
create and edit applications “on the fly”, easily accommodating the evolutionary approach
to systems development. For this reason, and the fact that interface design in general
requires a great deal of flexibility while trying out new ideas, an evolutionary design
approach was chosen for this thesis. The visual nature of Prograph makes an application
both a system model and an executable program. In this respect, the application code
provides up-to-date dataflow diagrams of the Interface Editor module at each stage of

development.

B. USER INTERFACE CONSIDERATIONS

Two user interfaces were developed for this thesis: the Interface Editor module
interface and the Form Use application program interface. A central feature of the Interface
Editor’s user interface is the incorporation of the following four separate methods for
controlling program action:

1. A menu bar (with associated pull-down menu commands).
2. Window Buttons.

3. Command-key equivalents to menu commands.

4. An Icon Bar.

The first three methods are included to conform to existing Macintosh user interface
guidelines. Most casual users of graphical user interfaces are familiar with button objects
and the menu bar, while more experienced users are generally comfortable with command
key equivalents for menu bar items. The fourth method is the icon bar, which is located at
the top right-hand corner of the Interface Editor’s main window. The decision to include an
icon bar was based on a desire to extend the traditional Macintosh interface, provide an
alternative means of program control for the user and to explore icon development issues
in general. Icon buttons are also included as the control mechanism for the data input and
display windows developed for the Form Use application, and provide a consistent control
interface for all Amadeus-related Form manipulation actions.

Icon design presents a number of difficulties, chief among them the fact that what may
be clear to one person may be completely obscure to another. Alan Kay describes this
problem as a consequence of semantic focus, having to do with the amount of meaning and
connectivity that can be solved by looking at a diagram [Kay in Laurei91, p. 202].

Poorly-designed icons do not readily suggest the underlying metaphor or associated
program action. In such cases, a user is forced to learn what the icon actually does rather
than what it suggests. This can be a difficult undertaking given an interface with dozens of

icon:., a popular practice in a growing number of commercial software products today.

C. THE INTERFACE EDITOR

1. Program Control Decisions

Menu bar commands (and their command-key equivalents) remain hidden from
view until the appropr.ate menu item is selected, at which time its associated menu items
become visible. The icon bar, however, remains visible whenever the main module window
is active. Users are generally more comfortable in an environment where objects are
brought to them instead of having to search for the objects. This is referred to as user-
centered design [Tognazzini91 p. 172]. The inclusion oi iiie icon bar satisfies this user-
centered design criteria, eliminating the requirement for a user to constantly search pull-
down menus or remember command-key combinations to select specific program control
actions.

Commands relating to Form management (New, Open, Close, Save, Save As,

Print) are found in both the icon bar and the Forms menu bar menu. Similar commands
are found in other Amadeus modules in a Database menu (for database management). The
' Forms and Database menu contents are similar to the File menu commands found in the
Macintosh Finder. This presents a consistent interface across the Amadeus application and
Finder. Thus, there should be no confusion, for example, as to the meaning of the Open
command (which opens a Form in the Interface Editor Module, a Database in the Amadeus
database definition module, and a File in the Macintosh Finder). This is also consistent with
general object-oriented programming concepts, since a single command (message), in this
case Open, results in different actions depending on the receiving object (Forms menu,

Database menu or File menu).

Not all Interface Editor icon bar commands are available as menu bar selections.
Commands without parallels in Amadeus’ Database and the Macintosh Finder’s File
menus are found only in the icon bar, and include Edit Form, Delete Form, Help and user
Preferences controls. The decision not to include these commands in the Forms menu

contributes to the overall consistency of the user interface.

29

2. Icon Design

Icons included in the Interface Editor present images commonly found on the
Macintosh desktop. Where no desktop correlations could be found, text was incorporated
as much as possible in an icon’s graphic design. The intent of including icons in the user
interface was not to introduce a completely new set of metaphors, but to build on what a
user is (theoretically) already familiar with. The choice of individual icons was made after
examining commercial software products which employ icons for program control and a
survey of literature on icon design. The icon buttons themselves were given color and three-
dimensional shading to make them stand out against the rest of the interface. Muted colors
were chosen to avoid overpowering the user’s senses.

It is not reasonable to assume that every user will correctly identify the purpose
of each icon the first time the interface is used. For this reason, consideration was given to
including text labels under each icon button identifying its function (e.g., “open” beneath
the open icon button). However, this tended to clutter the icon bar and required the use of
very small text which proved difficult to read. Ultimately a decision was made not to
include identifying text for each icon button. To compensate for the lack of amplifying text,
the Macintosh System 7 Balloon Help feature (which is supported by Prograph version 2.5)
is used to provide a brief synopsis of each interface object (buttons, icons, menus, menu
items and other window items).

Space has been left in the icon bar to accommodate additional icon buttons should

the need arise. ResEdit! and Prograph’s Icon Button class (discussed later in this section)
provide a straightforward means of adding icon buttons to the interface, or modifying

existing icons, as required.

1. ResEdit is a resource editor utility available from Apple Computer, Inc. which allows editing, cre-
ation and deletion of a Macintosh application program’s resource data.

30

3. End-User Views

The Interface Editor module’s design assumes two general types of users:
database administrators (who create databases and data entry/display Forms) and data
entry/retrieval personnel (who use the Forms). This distinction led to a decision to
implement the Interface Editor as a separate application rather than integrate it into the
Query Editor. One consequence of this decision was the loss of a straight-forward
connection to the database definition of the active database. The solution to this problem
was the creation of an external database definition disk file to substitute for the ability to
read information directly from an active database’s class attributes. However, the decision
lead to a more manageable and maintainable system, due to the smaller program size and

accompanying modular design.

4. Class Descriptions
This section describes classes unique to the Interface Editor module. Prograph
System Classes will not be discussed. Figure 1 shows the Interface Editor module class

hierarchy.

@ Classes

Design Ferm Tab Order Help K Yiadew

8.

Eoit Tont

Edit Form Pialeg

OK Dlaley Ves/Ne Disley

2. D D O

Temp Fietd

ol

Figure 1: The Interface Editor Module Class Hierarchy

31

a. IE Window
This class controls the user’s view of the Interface Editor module. The main
module window is an instance of this class. All menu, button and icon bar selections from

the main window are handled by methods defined in this class.

b. Help
Help windows are defined for the following Interface Editor windows:
Interface Editor Window, Define Form, Edit Form. All help windows are instances of this

class.

¢. Tab Order
This class allows the user to define the tab order of a Form. The tab order of
a Form is determined by the order in which a field appears in a Form’s field list. Altering
the order of a field in this list changes the tab order of the Form. The tab order window is

an instance of this class.

d. Preferences

This class allows the user to change the foreground and background colors of
a Form. Supported colors include: black, white, red, green, blue, cyan, magenta and yellow.

The User Preferences window is an instance of this class.

e. Design Form

This class allows the user to define new input Forms. The Design Form

window is an instance of this class.

[Edit Form

This class allows the user to edit the Form which is displayed in the Interface
Editor’s main window (the currently active Form). The Edit Form window is an instance

of this class. The Edit Form Class is a descendant of Design Form, and inherits its methods.

32

g. Credits

Each Macintosh application program has an About menu item in its Apple
Menu. Selecting this item displays general information about the application. The About

window is an instance of the Credits class, and displays programmer credits.

h. Display Info
This class controls display of field information. Double-clicking on a field of
the active Form in the Form View window opens a window which lists the characteristics
(attributes and attribute values) of the particular field. The Display Info window is an

instance of this class.
i. Dialog
The Dialog class contains the methods for displaying dialog boxes in

response to user actions.

Jj. OK Dialog
This class provides the window definition for a dialog which contains only

one user choice (OK), which is used to alert the user to a specific program condition.

k. Yes/No Dialog
This class provides the window definition for a dialog which contains two
user choices (YES and NO), and is used to obtain user confirmation before a specific

program action is executed.

5. User Interface
This section describes the user interface for the Interface Editor module. Dialog
design rules and guidelines for evaluation and usability of user interfaces, discussed in

Chapter 111, have been applied to the overall design and implementation of the user

interface for both the Interface Editor and Form Use application program.

a. Menu Commands

The Interface Editor contains three separate menus in its menu bar: FILE,

WINDOW and FORMS. Figure 2 shows the menu bar.

FILE WINDOW FORMS

Figure 2: The Menu Bar

The FILE menu is a default menu item created by the Prograph Application

Editor. It contains only one command: QUIT, which closes all active windows and

terminates program execution.The Interface Editor module is activated by selecting the

INTERFACE EDITOR command from the WINDOW menu. The FORMS menu enables

a user to perform certain basic Form management operations. The FORMS menu includes

the following commands:

1.

New. This command opens a window titled Design Form which allows the user to

create a new, untitied Form. The new Form is given a name the first time it is saved.

. Open. This command displays a standard Macintosh Open dialog containing a

scrolling list of files. Clicking the OPEN button or double-clicking on a File name
from the scroll list will open the selected (highlighted) Form in the Interface Editor’s

Form View Window.

. Close. This command closes the active Form. If the Form has been modified since the

last time it was saved, a dialog is displayed which allows the user to save the Form, or

dismiss the dialog and close the current form without saving it.

. Save. This command saves the active Form to a disk file. If a file already exists with

the same name as the active Form, the file is overwritten.

. Save As. This command opens a standard Macintosh Save dialog which allows the

user to specify a new name for the active Form. If the Form is saved under a new

name, the active Form is renamed, saved to disk (with the new name), and the old file
is closed (retaining its old file name and Form definition).
6. Page Setup. This command allows the user to specify printing parameters such as
- paper size and orientation.

7. Print. This command prints the active window.

- b. The Icon Bar
The icon bar consists of ten icon buttons which allow the user to access
Interface Editor commands independent of the FORMS pull-down menu. In addition to the
commands found in the FORMS menu, a number of other commands are included in the

icon bar. Figure 3 shows the icon bar.

Figure 3: The Interface Editor Icon Bar

Icon buttons descriptions (from left to right, top to bottom) are:
1. New. This command is the same as described in the FORMS menu.
2. Open. This command is the same as described in the FORMS menu.
3. Edit. This command is the same as described in the FORMS menu.
4. Save. This command is the same as described in the FORMS menu.
5. Save As. This command is the same as described in the FORMS menu.
6. Print. This command is the same as described in the FORMS menu.
7. Delete. This command allows the user to delete the active Form from disk. The Delete

command can not be undone. A dialog prompt is displayed giving the user the

35

opportunity to cancel the command or confirm the selection before a Form is
permanently deleted.

8. Preferences. This command allows the user to select background and foreground
colors for displaying a Form in the Interface Editor. These preferences do not become
part of the Form’s definition, and are used only by the Interface Editor.

9. Help. This command opens a user help window.

6. Windows
The Interface Editor window is the main window for the Interface Editor module,
and is shown in Figure 4. In addition to the icon bar described earlier, the following items

appear in the window:

Interface Editor Window

form; <no currently active form>
(Form View window)

Figure 4: The Interface Editor Window

36

1. Current Form Title. This command displays the name of the active Form.

2. Data and Time. The current date and time are displayed at the top right of the window,
Just below the icon bar. The date and time are controlled by the Interface Editor
Window’s Idle Method which is defined in the Application Builder’'s Window editor.

3. Active DB. This box displays the name of the database which the Form is being
designed for.

4. Form View Window. This window occupies about two-thirds of the Interface Editor

window area, and is actually a Macintosh canvas object which supports Quickdraw 2
editing and graphics. When the Interface Editor module is first activated, the form
view window appears black in color, signifying an empty form view window (i.e., no
aciive or open Form). Additionally, the Form name display reads “<no currently
active form>. When a Form is opened, the form view window background changes to
the user-defined background color, and rectangles representing fields of the current
Form appear, along with corresponding labels. When the active Form is cldsed or
deleted, the form view window once again becomes black in color. Each field of a
Form is a descendent of the Prograph Window ltem class. In order for objects of this
class to be visible in a window, they must first be included in the window’s item list
(a list of all window items belonging to the window). Displaying a Form in the form
view window is a two-step process. The location of each Form field is determined
relative to the window, and appropriate field attributes are set to reflect this data. Once
field locations have been determined, each field object is added to the item list of the
Interface Editor window (the owning window of the canvas object). This is not
sufficient, however, to permit graphical manipulation of field objects. Graphical
operations such as dragging and resizing of objects is accomplished in a canvas
object. Since a canvas object is itself a descendent of Window Item, it can not contain

other Window Item objects. The solution to this problem is to place a canvas (the form

2. Quickdraw is the part of the Macintosh Toolbox that supports creation of complex graphic oper-
ations [Apple85 p. I-137].

37

view window) on top of the Interface Editor window. Canvas objects (in this case,
rectangles) are then added to the canvas directly on top of each field object. Thus, a
Form is displayed as a 2-layer screen display. The bottom layer contains the actual
field object and the top layer contains the rectangle which bounds the field objects.
Whenever a field is moved or resized, only the canvas object is actually manipulated
directly. The corresponding field object (in the window item list), is updated using
positional information obtained from its corresponding canvas rectangle object. This
layering process is not required when Forms are displayed in Input and Display Form
windows by the Query Editor, since graphical operations on fields are not permitted
in these windows.

5. Quit Button. Selecting this button quits the Interface Editor module.

6. Close Box. A close box is located in the upper left-hand corner of the window.
Clicking in this box is equivalent to selecting the Close command in the FORMS
menu or clicking the QUIT button.

a. The Design Form Window

The Design Form window is activated when a user selects the New menu
item, types a command-N sequence from the keyboard, or selects the New Form icon from
the icon bar. Figure 5 shows the Design Form window. This window allows a user to create

a new form object, and consists of the following objects:

38

()

[E0=== Design Form]

relstions| employee w|

attributes| |name o |

data type [char ﬂ

fort | Courier w|
fontsize | 12 R4

Field | §) Edit Tent
Type Q Scroll List @
Bone
| S
all

Add JOctete [Enter | > tab
Field [Field | Dote § order |Conce!

Figure 5: The Design Form Window

. Field Names. This is a scroll list which contains the names of the fields defined for

the form being designed.

. Name. This is an edit text object which is located directly below the Field Names scroll

list and allows a user to enter field names from the keyboard. If a field name is too
long to fit into the viewable portion of the edit text object, the text automatically

scrolls to the right as the user types. Each field name must be unique.

. Field Type. This is a radio set object which allows a user to select the object type of

the field. The values of the radio set are static, independent on any database definition

and can not be changed by the user.

39

4. Relations. This is a pop-up menu object which contains the names of the relations of
the database which the Form is being designed for. -

5. Attributes. This is a pop-up menu object which contains the names of the attributes
associated with the relation which is currently visible in the relations pop-up menu.

6. Data Type. This is a pop-up menu object which contains the name of the data type
associated with the attribute which is currently visible in the attributes pop-up menu.

7. Font. This is a pop-up menu object which contains font names. The font name effects
the appearance of data entered into the associated Form field.

8. Font Size. This is a pop-up menu object which contains font sizes. The font size effects
the appearance of data entered into the associated Form field.

9. Add New Field Button. Selecting this button activates the Name field to accept text
from the keyboard.

10. Enter Data Button. Selecting this button enters the description of the field whose
name is currently highlighted in the Field Names scroll list. A field’s description is
defined by the text which appears in the Name field, the values which appear in the
windows pop-up menus, and the selected value of the Field Type radio button set.

11. Delete Field Button. Selecting this button deletes the field whose name is currently
highlighted in the Field Names scroll list from the Form.

12. Tab Order Button. Selecting this button activates a separate modal window (the Tab
Order Window) which allows the user to define the order in which fields are accessed
when the Tab key is selected.

13. Cancel Button. Selecting this button cancels all changes made to the Form and
closes the Design Form window without saving the Form.

14. Done Button. Selecting this button activates a dialog box which prompts the user to
name the Form which is being designed. The user has the option of naming and saving
the Form, cancelling the dialog and returning to the Design Form window, or closing

the Design Form window without saving the Form.

15. Help Button. Selecting this button activates a help window associated with the

Design Form window.

b. Edit Form Window

The Edit Form window is similar in appearance and function to the Design
Form window with transparent differences in the underlying implementation of the
controlling methods and the window title which appears at the top of the window. The Edit
Form window can only be accessed if a Form is currently active in the Form View window,
and allows editing of the active Form object. When the window is opened, it contains a list
of the active Form’s fields (in the currently defined tab order). Selecting a field name in the
Field Names scroll list causes the values of the field (Name, Field Type, Relations,
Attributes, Data Type, Font and Font Size) to be displayed in their respective edit text box,
radio set and pop-up menus. Edit Form control buttons are identical to those described for

the Design Form window. Figure 6 shows the Edit Form window.

41

e Edit FOrm |

relations| employee w|

attributesl ssn ;'
datatupel int ;I

fort | Courier wj
fontsize[12 ';'

;““‘ @ Edit Text
¢ 1O scroll List

Add Joent I
Fieid n.u']m" 242] Done | Cancel

Data §order

Figure 6: The Edit Form Window

¢. Tab Order Window

The Tab Order window displays the names of the fields of a Form in the
currently defined tab order. The purpose of the window is to allow the user to modify the
tab order of a Form. Figure 7 shows the Tab Order window. The window contains the

following objects:

IS Tob order IS
Field Names

Last
Move Up

Move Down

r
"
E
-_—/

e

Figure 7: The Tab Order Window

. Field Names. This is a scroll list identical to the Field Names scroll list contained in
both the Design Form and Edit Form windows. Selecting a name in this list causes the
field associated with the name to be the object of the window’s manipulation buttons.
. First Button. Selecting this button causes the field which is highlighted in the Field
Names scroll list to be moved to the top of the scroll list (i.e., it becomes the first field
in the tab order defined for the Form).

. Last Button. Selecting this button causes the field which is highlighted in the Field
Names scroll list to be moved to the bottom of the scroll list (i.e., it becomes the last
field in the tab order defined for the Form).

. Move Up Button. Selecting this button causes the field which is highlighted in the
Field Names scroll list to be moved up one position in the scroll list.

. Move Down Button. Selecting this button causes the field which is highlighted in the

Field Names scroll list to be moved down one position in the scroll list.

43

6. Cancel Button. Selecting this button cancels all tab order changes made to the Form
and closes the Tab Order window.

7. Done Button. Selecting this button closes the Tab Order window and displays the
field names in the new tab order within the Design Form or Edit Form window
(depending on the window which was active when the Tab Order window was
opened). The new tab order will not actually be saved until the Form is subsequently

saved.

d. The Help Window
Help windows provide on-line user help relating to the currently active
window. Help topics are selected from the list of Help Topics by double-clicking on a topic
title. Text for the selected topic appears in a scroll window. The Help window is dismissed
by selecting the Done button. Figure 8 shows the Help window for the Interface Editor main

module window.

Select a help topic by clicking on a subject |{] Help Topics
heading in the "Help Topics™ list to the right. Forms 2 i
" |Text for the chosen topic will appear in this :‘V ';'""
" window. Dismiss the help window by ENt form
selecting the DONE button. Teb Order

<l

& .

Figure 8: The Help Window

e. Field Information Window

The Field Information window : ' activated by double-clicking on a field of
the active Form (the Form currently displayed in the Form View window), and displays
information about the selected field. The window is dismissed by selecting the OK button.

Figure 9 shows the Field Information window.

EJE==8 fjeld Info E===|

name: name
1gtion; relation 2

sttribute: attribute 1

dats type: Integer

field type;: Edit Text

font: Ceurier
font size: 12

Figure 9: The Field Information Window

45

D. THE FORM USE APPLICATION

The Form Use application program simulates the user interface of the Query Editor
module and the module’s interaction with a disk-resident Form. Objects detined for this
application will form the basis of the Query Editor’s Form display, data entry and data

validation (type checking) functions.

1. Program Control Decisions

Since this application will ultimately be incorpor-t~d into the Query Editor
module, menu bar commands have been kept to a minimum. The Input Form and Display
Form menus allow a user to open either data entry or data display windows. Additionally,
users must retrieve Form objects from disk through the standard Macintosh Open dialog.
Window activation and Form retrieval will become transparent to system users once the
Form Use functions have been integrated into the Query Editor.

In order to provide consistency for Form creation, editing and use, icon buttons
were included in the Input Form and Display Form windows to control data entry and

display functions.

2. Class Descriptions
This section describes classes unique to the Form Use application. Prograph

System Classes will not be discussed. Figure 10 shows the application’s class hierarchy.

a. Form Window

This class defines the basic window in which Forms are displayed.

b. Input Form Window
This window inherits the basic window properties from the Form Window

class, and adds control objects and methods for inputting data into a Form.

L]

Jan
é Vh‘.' Htem v&y

-

"" Form Windew

—id—

Edit Text nput Form VWindew Output Ferm Vindow

.
3

Ferm

<l

Figure 10: The Form Use Application Program Class Hierarchy

c. Display Form Window
This window inherits the basic window properties from the Form Window

class, and adds control objects and methods for displaying data from a DFQL query in a
Form.

d. Form

This class has been imported directly from the Interface Editor module, and
contains the definition for a Form object.

e. IE Edit Text
This class has been imported directly from the Interface Editor module, and

contains the definition for IE edit text objects. Methods have been added which support
data input and display via IE edit text objects.

47

3. User Interface

The menu bar contains two items: FILE and FORM. The FILE menu contains
only one item: QUIT. This is a standard default Prograph menu item, and allows the
application user to terminate program execution. The FORM menu contains two items:
INPUT FORM and OUTPUT FORM. The INPUT FORM command displays a Form
(specified by the user) in an Input Form window. The OUTPUT FORM command displays
a Form (specified by the user) in a Display Form window.

The Form Use user interface is limited to a set of icon control buttons in the Input

Form and Display Form windows.
4. Windows

a. Input Form Window

Figure 11 shows the Input Form window. Forms created by the Interface
Editor module are displayed in this window for data entry purposes. The window contains
the following control buttons:
1. Clear All. This button clears all data entered into the displayed Form.
2. Clear Form. This button clears all data currently visible in the displayed Form.
3. Enter Data. This button adds the data currently visible in the displayed Form into the
attribute result of class Form Window.
4. Done. This button is essentially the same as the Enter Data button, except that the Input
Form window is closed after the displayed data has been added to the list.
5. Cancel. this button cancels the data entry process, deletes all data currently contained

in the attribute result of class Form Window and closes the Input Form window.

I REEEER (nput Form Window

Figure 11: Input Form Window

b. Display Form Window
Figure 12 shows the Display Form Window. Forms created by the Interface

Editor module are displayed in this window for data display purposes. The window
contains the following control buttons (from left to right):

1. First. This button displays the first element of a data list.

2. Last. This button displays the last element of a data list.

3. Previous. This button displays the previous element of a data list.

4. Next. This button displays the next element of a data list.

5. Done. This button closes the Display Form window.

49

IS 0isplay Form Window IS

al U

Figure 12: Display Form Window

E. THE FORM OBJECT

1. Form Object
A Form is an object composed of one or more fields, and defines a template for
entering and displaying data in response to DFQL queries specified in the Amadeus Query
Editor module. The Interface Editor module provides a means of defining, modifying and
saving Form objects.

A Form object consists of the following attributes:

1. name. The Form’s name is assigned by the user in the Interface Editor module. The
name attribute is used as an input to a DFQL query, and identifies which Form is to
be opened in response to the query.

2. fields. This is a list of field objects associated with the Form.

3. end user. Identifies the owner of the Form (i.e., the name or identifier of the user or
class of user who created the Form).

4. protected? This attributed identifies whether the Form is protected (e.g., read-only,
read-write, etc.). User access and security issues are being addressed separately, and

are beyond the scope of this thesis.

2. Field Object

Each Form field is a Prograph Window Item object (a descendent of the Window
Item class). Fields supported by the Interface Editor are considered display fields
[Gibson90], and consist of an editable area on the screen used for editing, displaying, or
updating a database. Currently, the Interface Editor creates fields consisting of descendents
of the Edit Text Window Item class (called IE edit text). Extending the module to allow
additional types of fields requires defining new subclasses within the Interface Editor class
hierarchy (subclasses of Window Item) for each new field type. Each field object consists
of the following attributes:

1. name. This value identifies the field with a unique character string. The field name is
assigned by the user in the Interface Editor module at the time the field is defined.

2. relation. This value identifies the database relation which the field is associated with.
This value is assigned by the user in the Interface Editor module at the time the field
is defined.

3. attribute. This value identifies the database attribute which the field is associated
with. This value is assigned by the user in the Interface Editor module at the time the

field is defined.

51

4. font. This value identifies the font name of the field. Data displayed in the field will
appear in this font.

5. font size. This value identifies the font size of the field. Data displayed in the field will
appear in this font size.

6. position. This value identifies the position of the field in a Form object relative to the

coordinate system of the window in which it is displayed.

3. Windows
Forms are displayed in either the Form View window of the Interface Editor
module or the Input Form window or Display Form window of the Form Use application
program. Each window is a descendent of the Prograph system class Window, and inherits

the attributes and methods of its parent classes.

4. User Interaction
User interaction with Forms is limited to keyboard and mouse input/selection. For
data entry, an insertion cursor identifies the active field. The cursor is moved from one field
to another either by selecting the destination field with a mouse, or by repeatedly pressing
the tab key. The order in which the insertion cursor moves from field to field is determined
by the tab order of a Form. The tab order is defined in the Interface Editor module at the

time a Form is created.

5. Form Methods

Methods for defining and editing Form objects are contained in the Interface
Editor module. Methods for data manipulation (entering and displaying data in a Form) are

contained in the Form Use application.

6. Data Validation

Data validation (type checking) is performed by methods defined in the Form Use

application program. These methods will ultimately be incorporated into the Query Editor

52

by using Prograph’s selective load feature, which allows loading individual classes from
one application into another.

Type checking is possible since each Form is associated with a specific database
and database relation. Each field of a Form is further associated with a specific relation
attribute (and corresponding attribute data type). This knowledge is obtained from a
database definition file which resides on disk and is available to the Interface Editor during
Form definition. Type checking takes place as data is entered into a Form by a method that
compares the type of the inputted data against the data type of the field’s associated

relation. Data validation methods have not yet been fully implemented.

7. Input Form
Forms used for entering data are displayed in a separate Input Form Window (a
descendent of the class Form Window). The window is activated in conjunction with a

DFQL query. Control objects (icon buttons) are included in the window.

8. Display Form
Forms used for displaying the results of database queries are displayed in a
separate Display Form window (a descendent of the class Form Window). The window is
activated in conjunction with a DFQL query. Control objects (icon buttons) are included in

the window.

9. Form Creation and Editing

Forms are created and edited in the Interface Editor module’s Design Form and

Edit Form windows, respectively.

10. Form Use
Forms are used by the Amadeus Query Editor module as part of DFQL quenes.
Although Forms can be used for both input and data display, there is only one Form class.
Depending on the intended use, the Form is opened in either an Input Form or a -Display

Form window.

a. Input Forms

Figure 13 shows a DFQL operation which opens an Input Form (specified by
Form name) and inserts data entered via the Form into a relation specified by relation

name.

Figure 13: DFQL Use of an Input Form

Forms permit a user to enter data one fuple at a time. As data is entered, it is
maintained in an attribute called result of class Form Window as a list of tuples. Each tuple
represents the set of data entered into the fields of a Form. This relationship is shown in

Figure 14.

result: list of tuples
/ ((tuple 1) (tuple 2) ... (tuple n))

P

fields tuple: list of data retrieved from fields
[c— of a displayed Form
\\ —— (data], datajy, data3, datay, datag)
N —

data: data entered via the keyboard

Form

Figure 14: Representation of Data Entered via an Input Form Window

The ordering of elements (i.e., individual pieces of data) in a tuple
corresponds to the order of attributes in a relation’s definition. The first element
corresponds to the first attribute, the second element to the second attribute, and so on.
When a Form object is created, each of its component fields is associated with a specific
attribute name. Since the position of each element of a tuple corresponds to a specific
attribute position, and each field of a Form corresponds to a specific attribute name, this
information can be used to determine the proper position of inputted data in a tuple.

These same relationships are used to support type checking of inputted data.
Since each attribute has an associated data type, this value can be compared with the type
of the data entered into a Form field. If a type mis-match is identified, the user must correct
the data before it can added to a tuple. Figure 15 shows the field-to-element mapping. The
notation: field,, field, fields, etc. in Figure 15 refers to the tab order of a particular field

(e.g., field, is the first field in the Form’s tab order, field, is the second, etc.).

55

Given the following definitions:
Form: field |, field,, field ;, field

tuple: (element,, element,, element;, element,)

assume the following by definition, the Attribute—element
field - Attribute mapping: mapping is:

field, —— A, A} ————> eclement,
field, >< A,y A —————> clement,
field A, A3 —————> clement,
field, ——» A, Ay ————p eclement,

Then data elements will be retrieved from Form fields and stored in tuples as:

(ﬁeld 1 ﬂdd3! ﬁeldb ﬁddd

Tuples, in turn, will be stored in result as:

((field,, field,, field,, field,) (field ,, field;, field;, field,) .)

Figure 15: Example of Field-to-Element Mapping

As an example, assume that the Form specified by Form name (see Figure 13)
contains the following fields: Name, Address, Age, Birthdate and Phone. When the query
shown in Figure 13 is processed, an Input Form window is opened, and Form name
displayed as depicted in Figure 16.

If relation name has been defined in the database as:

relation name (Name, Age, Address, Birthdate, Phone)

where Name, Age, Address, Birthdate and Phone are the attributes of relation name, then

data entered into Form name will be stored in result as:

((Name value;, Age value;, Address value;, Birthdate value;, Phone value)

(Name value;, Age value,, Address value,, Birthdate value,, Phone value;)

(Name value,, Age value,, Address value,, Birthdate value,, Phone value,))

When the user closes the Input Form window, the data contained in result

becomes available to the Query Editor module.

e Input Form Window IRt

Figure 16: Input Form Window

b. Display Forms
Displaying data from a DFQL query follows a similar logic to that described
above for Input Form. Figure 17 shows a portion of a DFQL query that might be used to

display query results in a Display Form window:

Form name list of tuples

(display)

Figure 17: DFQL Use of a Display Form

In this example, list of tuples consists of a list of list of strings, and can be expressed as:

((tuple) (tuple) (tuple) ... (tuple))3

Since
tuple —> (element |, element,, elementj, ... element)
and
element —> string
then
list of tuples —> ((list of strings) (list of strings) ... (list of strings))
where

(list of strings) —> (string,, string, stringj, ..., string,)

3. The notation () indicates a list. Thus a list of lists is represented as (() () ... ())

58

Each tuple represents a set of data generated as a result of a DFQL query. A
DFQL query can produce zero, one or many such tuples. The individual elements (in this
case, strings) of a tuple contain the data which is actually displayed in the Display Form
window.

Just as the field-Attribute mapping is used to build tuples during data entry,
the same relationships are used to determine the proper field in which to display each tuple
element. Using the definitions and mapping from Figure 15, the mapping from tuple

element to Form field can be expressed as:

element; —— P A, ———> field,
element; ————p A, >< field,
element; ——— = A, feld

elementy —___p Ay, —» fieldg

Tuples are displayed in a Display Form window which contains the Form
specified by the left-hand input (Form name) to the DFQL operation shown in Figure 17.
Data is displayed in the Display Form window one tuple at a time. Users can page through
the data (list of tuples) using control buttons (First tuple, Last tuple, Previous tuple, Next

tuple) defined in the Display Window class (see Figure 18).

59

EEEENEETNENRTEE Oisploy Form Window NGNS

Figure 18: Display Form Window

V. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The purpose of this research was to design and implement an Interface Editor module
and a Form-based interface for the Amadeus multi-relational database front-end system.
The research provided the initial stage of development for a complete Form creation and

manipulation capability for Amadeus users.

A. SUMMARY

An extensive literature review was accomplished in which object-oriented
programming, the Prograph development environment and Human-Computer Interface
design issues were researched. The design and specification for a Form object, a Form
creation application (the Interface Editor module) and a Form-based user interface (the
Form Use application) were successfully implemented. The feasibility of the Form object
and application programs were demonstrated by simulating the Amadeus Query Editor

module’s use of Forms for data entry and display.

B. CONCLUSIONS

The appropriateness of the user interfaces developed for this thesis can be most
effectively measured through formal testing by representative groups of system end-users.
Informal testing provided insights into the overall interface design, and lead to
improvements in program control functions while identifying areas requiring further
development. The Interface Editor, as currently implemented, is limited in scope and
functionality. It extends the traditional Macintosh user interface by incorporation of icons
for program control. However, the Form objects created by the Interface Editor are limited,
at present, to only a single field type. Additionally, the Form Use interface provides a single
record-at-a-time view for data entry and the display of DFQL query results. While

impacting overall system performance, these limitations are not considered critical. Rather,

61

they provide a point of departure for continued research into enhancing the user interface

for the Amadeus system.

C. SUGGESTIONS FOR FURTHER RESEARCH

Further research into the topics presented in this thesis should include, but not be
limited to, the following: expansion of the Interface Editor module to allow incorporation
of additional window item class objects in a Form field; expansion of the user help facility;
implementation of more extensive data validation beyond simple type checking;
development of a dynamic Form generation procedure which allows Forms to be generated
“on-the-fly” in response to the output of DFQL queries; extending the Form cbiject to allow
multiple record-at-a-time viewing; and revising the Interface Editor module to provide a

more efficient direct manipulation interface.

1. [Expansion of the Interface Editor

The Interface Editor module should permit the inclusion of all window items
supported by Prograph as field objects. This capability will provide a more flexible Form
object, enhancing the Query Editor module user interface for both data entry and display.
Additionally, data representation will become more responsive to user needs, since some
information is more appropriately represented as a graphic object, such as radio button sets
or check boxes. Expanding the Interface Editor module to meet this capability will require
defining new window item subclasses in the same manner as the /E edit text subclass of edit

text was defined. The object-oriented design of the module is well suited for this task.

2. Expansion of the User Help Facility

The Interface Editor module user help facility is very basic in its conten: and
functionality. As currently implemented, only the Interface Editor’s main module window

has a fully functional help facility. Implementation of the help facility for each modute

62

window is still required. Additionally, it may be desirable to develop a context-sensitive

help facility which provideé more :responsive user help for the system.

3. Extension of Data Validation Procedures
The current data validation procedures employed by the Form Use application
consist of simple type checking of input data against attribute data types defined for each
database. A more robust data validation facility is required which is capable of supporting
database unique data types, including formatted data such as date fields. Consideration
should also be given to the inclusion of range checking (checking for out of range values

vice simply verifying the correctness of the associated data type).

4. Dynamic Form Generation.
Currently, all Forms used by the Query Editor must be defined prior to use,
requiring a priori knowledge of DFQL queries and their results. This is sufficient for
processing data using “canned™ queries. However, the ability to dynamically generate a

Form based on DFQL query results will provide much greater system flexibility.

5. Extension of the Form Object
The current Form object is only capable of displaying query results one record at
a time. This provides a useful, but limited view for the user. The Form object should be

extended to permit simultaneous display of multiple records on a single Form.

6. Extension of the Interface Editor Direct Manipulation Interface
The Interface Editor module interface makes use direct manipulation features for
dragging and resizing Form fields. However, Form creation and editing takes place in
separate modal windows. The use of modal windows restricts, to a certain degree, the user’s
actions. A more effective interface might be realized if all Form manipulation (including
creation and editing) occurs in the Form View window rather than separate modal

windows. This would, however, require extensive modifications to the underlying

functionality of the interface. User testing may determine whether the efforts required to

provided such a feature are worth the cost associated with re-designing the interface.

APPENDIX A

DEVELOPMENT NOTES

The Interface Editor Module, Form object and Form Use application were developed
using Prograph version 2.5.2 on a Macintosh IIfx computer with 8 MB of RAM, a 210 MB
hard disk and an Apple 21” color monitor. The operating system was System 7.0 (with
System 7 Tuner installed). This configuration is considered adequate for developing
medium to large-sized Prograph applications.

Version 2.5.2 of Prograph fixes a number of “bugs”™ present in earlier versions.
Additionally, version 2.5.2 replaces two Prograph Extensions and two Window Class
methods found in version 2.5.1. For these reasons, the applications and classes developed
for this thesis may not work properly on systems running Prograph versions 2.5 or 2.5.1.
Version 2.5.2 update patches are available directly from TGS or from commercial
electronic bulletin board systems (such as America OnLine and CompuServ).

The Icon Button Class (a descendent of Click Item) was used to implement the icon
buttons used in the applications developed for this thesis. This class is not part of the
standard Prograph system release, and is available separately from TGS as part of the
Prograph Goodies Disk. Icon bar icons were created using ResEdit, and are stored as PICT
resources in the resource fork of the Interface Editor application.

A large-screen color monitor (19” or larger) is recommended when developing
Prograph applications. It is not unusual to have a dozen or more windows open
simultaneously, each displaying a method, case, attribute or class window. The larger
screen size allows simultaneous viewing of multiple windows, especially when debugging
a program using Prograph’s single-step mode for animating data-flow diagrams.
Additionally, Prograph uses color coding to distinguish icon and dataflow states, which
complicates program development on a black and white or grey-scale monitor. Figure 1

shows a typical 21" screen during program development.

65

= P
- 2 ¥
“whertass € ran
wzass co Yy vy
"l (3»
ouner oo
ram -
v (ao)
aattve? -
-65 4]
vt vt -
. ™
.?. .!l
4 [T
- <
b— .
A ——
- ™
—] X
1me) e
- ¥,
"'"“" (s0)
-~ —
{eg00)
S A A
L2 “SCower /e
e || ZEL
" “Coww/s...
‘!.l‘ a-!-—
v ki
oy methed e
¢Sl [y
v
Wom Nt —wlpCanter
¥ “-“ﬁl Y
ohabane gt

Figure 1. Multiple Windows Open During Application Development

The interface for the Interface Editor module was developed for a 13” (or larger)
monitor (ideally 8-bit color, however the effect of color icons will not be degraded when

viewed on a grey scale monitor). Although the module will run on a compact Macintosh

computer (compact-mac) which is capable of running Prograph!, the compact-mac’s 9”
black and white monitor will not correctly display icon buttons (a consequence of
attempting to display 8-bit graphics on a 1-bit monitor). Additionally, the Interface Editor
main window exceeds the dimensions of a 9” monittor.

Prograph is, essentially, a list processing language. Prior experience with list

processing is not necessary in order to use Prograph. However, in order to take full

1. Minimum system requirements for Prograph are: Macintosh Plus generation with 128K ROM and
IMB of RAM. Prograph can be run from floppy disks, however a hard disk is recommended.

66

advantage of the language, familiarity with lists and list processing techniques is strongly
recommended.

Prograph implements most of the Macintosh Toolbox calls described in Apple
Computer Inc's Inside Macintosh [Apple85] and Macintosh Technical Notes (published
separately from Inside Macintosh). However, Prograph’s accompanying Toolbox
documentation (Tutorial and Reference Manuals [TGS90b and TGS90c] and on-line help
facilities) are incomplete. Serious Prograph development efforts require access to the
complete set of Inside Macintosh and Technical Notes, the definitive reference sources for

Macintosh program development.

67

APPENDIX B

PROGRAPH BASICS

A. LANGUAGE BASICS

1.

Pictorial Representation of the Language

Prograph programs are composed entirely of icons and amplifying text. Figure 1

shows common icons used in constructing Prograph programs.

]
g

« ==
Constant VA o j} 7 -- IMI @

2.

Figure 1. Examples of Prograph Icons

Control Structures

Prograph Control Structures control the flow of execution within a program.

Control structures are composed of icons (either an ‘X’ or a ‘v") that are attached to the

right-hand side an operator, and are activated on either the success or failure of the

associated operation. The default control structure is success. Operations fail in one of three

ways: (1) in a match operation, the items being compared do not match, (2) a Boolean

operation returns a FALSE value, or (3) a FAIL condition is propagated to a particular

operation. Operations may also generate errors under certain conditions, including: type

mis-matches, syntax errors, or a specific program condition which can not be satisfied by

the particular control structure. Figure 2 shows typical Prograph control structures. An ‘X’

within a control structure indicates that it is activated if the associated operation fails. A

check mark (v) indicates that the control structure is activated if the associated operation

within a control structur2 indicates that it is activated if the associated operation fails. A
check mark (V) indicates that the control structure is activated if the associated operation
succeeds. Other graphics inside the control structure icon indicate additional action to be

taken.

%ontinuea :I m Match EI
%Terminaiem %ﬂext caseajl

Figure 2: Prograph Control Structure Icons

The most basic Prograph conditional execution format is the Next Case with an
accompanying match operation or conditional test. Figure 3 depicts a conditional test with
a match on success control structure which tests for a specific condition to determine which

of two case windows will be executed.

l —
(50—) control 1:2 iy o | ———

1

LILISSISSL ST LIS LSS SSSSLLS LSS IS LSSV S

if “condition” is satisfied

then go to the next case
window. else continue in condition of case 1 was
this window satisfied, so this case
is executed.
Y/ call methed

P LU L Ll il
SSSLLS LSS LSS LSS LSS AL 7.

Rituna

S C

i

Figure 3: Examplie of the Next Case on Success Control Structure

69

3. Classes and Inheritance

Classes of objects, and all inheritance relationships, appear on the screen as trees
of icons. The Prograph class system provides a means for constructing a new class from
an existing class through inheritance. A Prograph class can inherit from at most one parent.
This is referred to as single inheritance.

The class icon is a hexagon which is divided into two parts: attributes on the left,
and methods on the right. Double-clicking on the left half of a class icon displays the
attributes of the class, while double-clicking on the right half displays the class methods.

Figure 4 depicts this relationship.

6_9 Classes

V Windo Window Item
NULC

oo &l
FALSE idle Mouse Down Update

v

w || (& 5] [T

v Hilite Open Clese Bounds
visible?
attributes window methods window

Figure 4: Prograph System Class Icons and Component Parts of “Window Item Class”

4. Attributes

Prograph attributes are displayed in an Attributes Window. There are two types
of Prograph attnbutes: instance and class. An instance attribute may have a different value
for each instance of a class. Class attributes, however, have one value for the class as a
whole. Therefore, the value of a class attribute is shared by all instances of the class. The

attribute icon is a downward pointing triangle.

5. Methods and Cases

A Prograph method consists of a sequence of one or more dataflows, called cases.
A case consists of an input bar, an output bar, operations and datalinks, Data flows into a case
via the input bar, and out through the output bar.

Methods are referenced in one of four ways: universal, data-determined, explicit
and context-determined (see figure 5). These terms cormrespond to the terms global, regular,
early-bound and self, which are more commonly used in object-oriented programming
literature [Wu9lc p. 71]. Essentially, the calling format determines where Prograph looks

for the referenced method in the class hierarchy.
(1) Universal. This is a call to a global method.

(2) Data-determined. Prograph looks for the referenced method in the class

of the objéct which flows into the leftmost terminal of the method.

(3) Explicit. Prograph looks for the referenced method in the class which is
explicitly listed to the left of the “/” in the method icon. If the method is not found in the
explicitly listed class, then Prograph uses inheritance links to check ancestor classes for the

method.

(4) Context-determined. Prograph looks for the referenced method in the
same class as the current method that contains the method referencing operation. This

allows a method to send a message to itself.

71

6. Operations

call methods 1:1

KL Ll L 2l 2

lasslnothod unoZ
explicit

context-determined

LS LLLS LSS SIS AL SIS SIS S S LIS,

Figure 5: Method Calling Formats

An operation is the basic executable component of a case. Operations have a

name, zero or more inputs, zero or more outputs and a distinctive icon. Data flows into an

operation through terminals located on the top of the operation icon, and out through roots

located on the bottom of the icon. Prograph provides a special icon, called a synchro link

which forces a specific execution order on a pair of operations (see figure 6). However,

the synchro link does not guarantee that the operations will execute consecutively, only that

one will execute before the other. [TGS90c p. 7] In the example shown below, A will

execute before B. However, there is no guarantee that B will execute immediately after A,

since there is no way

to determine when C will execute.

72

>

> %omething elseﬂl
A "'-2_, c
~
2,
=,
3,

Pefore doing this7)]
B

SALLI LIS AL LA SIS 1A PSS A LA T LS LS A o

g

Figure 6: Synchro Link

7. Message Passing

Message passing in Prograph is similar to most other object-oriented languages.
Some differences occur, however, because of the dataflow nature of the Prograph language.
Essentially, in Prograph objects flow into operations to initiate actions. In a “standard”
object-oriented programming language, a stationary object sends a message 10 another
stationary object. Although the models are somewhat different, the basic concepts are the
same. [TGS90b p. 93]

8. Primitives
Prograph primitives are calls to compiled methods, and are categonzed into
sixteen groups, including: Application, Bit, Data, File, Graphics, Instances, Interpreter

Control, I/0, Lists, Logical/Relational, Math, Memory, Strings, System, Text and Type.

Primitives comprise the kemel of Prograph's functionality. Unlike other object-oriented
programming languages, Prograph primitives do not belong to any class. This, and the fact
that the language supports regular data types such as string, integer, Boolean and real

make Prograph a hybrid object-oriented programming language. [Wu91c p. 72]

B. THE PROGRAPH ENVIRONMENT

The Prograph language is seamlessly integrated with the Prograph development
environment. An editor provides a visual interface for creating and modifying programs,
while an interpreter contains features which allow dataflow diagrams to be displayed
during execution, in effect graphically animating the flow of data throughout a program as

each operation is executed [TGS90a p. 21].

1. Editor
The Prograph editor is context sensitive, so syntax errors are caught at the time
they are created, eliminating the need for a traditional debugger. During program
execution, run-time errors are {lagged, program execution is halted and the appropriate
dataflow diagram displayed. This enables the user to correct the error and immediately
resume execution. An on-line help system is also available and is fully integrated into the

editor.

2. Interpreter
The Prograph interpreter is highly interactive. Program execution may be paused
at any point and dataflow diagrams and data values examined, allowing simultaneous
execution and editing of applications. Additionally, program execution may be traced step
by step, allowing the flow of data through a program to be traced visually. If a dataflow
diagram is changed while execution is paused, the interpreter backs up to the change and

continues execution from that pcint.

74

C. COMPILER

The Prograph compiler generates stand-alone application programs, and allows
linking to modules developed with other programming languages such as MPW C and
Think C. The compiler also includes an intelligent Project Manager which keeps track of
the files needed to build a particular application. The Project Manager selects only the code
actually required when building a stand-alone application and informs the user of any
missing code. If the compiler detects an error in a Prograph file, the user can enter the
editor/interpreter to see the operation that generated the error.

A certain amount of overhead is normally introduced when creating stand-alone
applications. In Prograph, stand-alone applications which do not use system classes require
an additional SOKbytes of overhead, while those with system classes require an additional
130Kbytes. However, the execution speed of compiled Prograph code is, on the average,
15 times faster than the same interpreted code [TGS90a p. 33-36).

5

APPENDIX C
DATABASE BASICS

A. DEFINITIONS

1. Database
In a general sense, a database is a collection of related, recordable facts that have
implicit meaning. To be more precise, however, a database may be defined as a “shared
collection of inter-related data designed to meet the varied information needs of an
organization” [Falby91 p. 14]. Databases have the following properties {Eimasri89 p. 3-4}:
1. Logically conerent collection of data with some inherent meaning.
2. Designed, built and populated with data for a specific purpose.

3. Represents some aspect of the real world (referred to as the mini-world).

2. Database Management System (DBMS)

A DBMS is a general-purpose software system for defining, constructing and

manipulating a database.

3. Relational model

The relational model for Database Management Systems was first introduced in
1970. The model is founded solidly on mathematical principles and provides simple,
uniform data structures. The relational model represents a database as a collection of tables.
Each row in a table represents a collection of related data values which can be interpreted
as a fact describing an entity or a relationship instance. The table name, and the names of
the table columns, provide additional meaning to the values in each row of the table. Each

row in a relational database relation is called a tuple, and each column title is called an

attribute. The Table itself is referred to as a relation. [Elmasri89 p. 135-137]. Figure 1
shows a relation, named EMPLOYEE, from a relational database.

EMPLOYEE ‘/‘/a m-zms\‘\,,

Name Age | Sex SSN Salary
Jane Doe 35 F 123-45-6789 | 50,000.00
tuples—s=[Bilj Jones 28 M 111-22-3344 | 32.000.00
. John Smith 30 M 000-99-3456 | 28,000.00

Figure 1: Table from a Relational Database

4. Data Manipulation Languages & Database Query Languages

Database Management Systems can provide two types of Data Manipulation
Languages (DML) which allow users to manipulate data in the database: high-level or non-
procedural and low-level or procedural. High-level DML’s can be used either as stand-
alone languages or can be embedded in a general-purpose programming language. When
used as a stand-along language, high-level DML statements are entered interactively from
a terminal by a DBMS user, and the DML is called a database query language. Low-level
DML’s must always be embedded in a general-purpose programming language. Casual
DBMS users normally use a high-level query language to manipulate the database, while
programmers use a DML which has been embedded in a general-purpose programming

language.

APPENDIX D
INTERFACE DESIGN GOALS AND CONCERNS

The goal of interface design should be to empower people, leading to an increase
in user experience, productivity and creativity [Dertouzos90, Butler90 p. 349]. Users are
empowered when they have “a clear predictive model of system performance and a sense
of mastery, control, and accomplishment” [Don92 p. 69]. To truly empower a user,
however, the interface designer must fully understand the difference between “efficiency”
in terms of computer science and *“productivity” in terms of getting more value from work
[Winograd90]. A well designed interface should be practically transparent, allowing users

to concentrate directly on the task at hand [Shneiderman92].

A. THE DESIGN PROCESS

The design process should typically begin with an understanding of the system’s
intended users to develop a user profile. It is not uncommon to characterize system users
into different groups or classes. This may resuit in different design goals for each user class.
For example, classifying users as novice, intermediate and advanced will require unique
features for each user class. {Schneiderman92 pages 145-148]

After completing the user profile, task analysis should be conducted to identify the
functionality required of the proposed system. Good task analysis means continual user
testing, starting as soon as the work begins. Key elements of the design should emerge from
the task analysis, rather than being shaped to fit the results of the user testing [Norman in
Laurel90 page 9].

Change is important to good interface design. Procedures that allow incorporation of
changes, up to a point, are considered critical to successful design. Ideally, this should
include an Iterative design methodology involving user testing and prototyping tools tu

rapidly produce non-functional and functional models of the system to elicit user feedback

at key stages of the design process [Mountford90]. Iterative design is a process of
identifying a problem area, modifying the appropriate portion(s) of the application, and re-
testing. The iterative process continues until a decision is made to accept the prototype.
Most problems will disappear by the second or third iteration [Tognizzini92 page 86).

The cost of user testing has been a topic of debate in recent years. Historically,
elaborate test scenarios, complete with high-tech equipment for recording and analyzing
user actions and perceptions, reinforced the belief that user testing was a costly
undertaking. Newer approaches described in [Tognazzini91 pp. 79-91] stress simplicity
and common sense, promising to make user testing more acceptable both in terms of cost
and end-user productivity. These approaches include:

1. Develop test scenarios that incorporate situations that users may face, then build
prototypes that enable evaluation of the situations. Two types of prototypes can be
built: horizontal and vertical. Horizontal prototypes allow testing overall design
concepts by displaying all or most of an application’s menus, windows and dialogs
without going into depth in any one area. Vertical prototypes allow greater
examination of specific parts of an application, and are used when new design
concepts and/or technology are involved.

2. Prototypes can and should be created in a matter of days, not weeks or months. A wide
variety of prototyping tools are available which greatly aid prototype development.

3. Choose test subjccts carefully. In the initial stages, user testing should focus on
interface issues. Content testing (testing the actual performance and applicability of a
system - such as an accounting package or CAD package) is generally not a concern
during iterative design testing. Studies have shown that a maximum of three test
subjects per design iteration is sufficiem [Tognazzini page 82]. Any more than that
will simple serve to confirm problems already identified. Each iteration should
involve new test subjects [Tognazzini page 270]. Once the interface design has been

finalized, validation testing should be conducted. Validation testing requires a

79

carefully chosen representative sample of the intended user population, and may be
applied to late alpha or early beta versions of the application.

4. Apply a standardized methodology for observing test subjects. Apple Computer uses
a methodology called User Observation Through Thinking Out Loud [Gomoll in
Laurel90 pages 85-90]. This process does not yield statistical results. Rather, it allows
an observer to identify areas where test subjects are having problems using the

product, and provides information necessary to improve it.

B. FACTORS THAT INFLUENCE INTERFACE DESIGN

In general, interface design problems can be easy to describe, but extremely difficult
to actually solve [Erickson91]. A good deal of thought, insight, ingenuity, understanding
of the original problem and knowledge of the end-user are required; however this still may

not be enough to satisfy everybody that a solution is good.

1. Lack of Standardized Methodology

There is no standard method of looking at interface design. This lack of
standardization can lead to confusion in design, testing and implementation of user
interfaces. Russel summarizes this problem in [Russel92 p. 71-72):

As the state of graphical user interface design theory continues to mature from its
beginnings in the mid-eighties, emphasis on reducing the burden of interface
programming has become more prevalent. Across the many popular computer
platforms used professionally today, a myriad of interface building packages have teen
designed with this concem in mind. Currently, however, no standard design
methodology exists and more importantly, no construction package has emerged that
significantly reduces programming effort while still providing the application interface
programmer with full control over the design process... .

2. Compromise
Interface design is largely a compromise [Erickson91). Software and hardware
must complement each other; an elegant software solution implemented on the wrong

platform will not necessarily function the way the designers intended. Human factors must

also be addressed (i.e., the interface must take into account human capabilities and

80

limitations). Sophisticated features of an interface may not be practical if the human user
cannot take advantage of them.

Additionally, an interface design team is usually inter-disciplinary. Different
disciplines have different priorities, thinking styles and values. When people from different
disciplines get together, values tend to collide. [Kim in Laurel90 page 32] Thus, competing

concerns must constantly be balanced in order to arrive at a mutually acceptable solution.

3. Appropriateness of the Interface
A common design error is to include too much functionality into a system,
producing a number of undesirable side-effects, including: excessive code to test, debug
and maintain, more complicated user manuals and help facilities and a steeper learning
curve and potentially higher cognitive loading on the user. Problems also arise if
insutficient functionality is included. In such cases, users may become frustrated because
of a perception that the system does not adequately support specific functions or features.

[Schneiderman92]

4. Pressure to Produce

Interface designers are often under a great deal of pressure to ship a product
quickly, resulting in a tendency to accept the first promising design idea and forego proven

testing and development procedures [Mountford90].

81

APPENDIX E

PROGRAM LISTINGS FOR:

THE INTERFACE EDITOR MODULE

AND

THE FORM USE APPLICATION

82

@ Classes |

Application Menu Window Item 1= '

-é eg \% / Crcdits/ Preferences
IE Module Window Menu Form Menu Canvas 6{ E@

. Design Form Tab Order Help IE Window

IECanvas

Text

e @
¢ ®

OK Dialog Yes/No Dialog

£ 3 60

Temp Form Field

® @O &

End User Database Attribute Relation

n'

Oracle DB Oracle Attr Oracle Relat ion

N

Database Liaison Librarian Report

IE 03/15 copy Mon, Mar 22, 1993 9:49

V Display Info

(() %o .

Fwid into®

asme
ML

owaer

<

aative?

§<‘§<E

et

< [«

sslncted Rem
1138 4221

tocatien
1 321 2001

size
sctivets methed
*/Close”

v

v
ey mothed
(<ctton>>_

@Doisplay Info

€ 03/15copy Sun Mer 21,1993 2215

Zaispiay Info/okey info 121

SIL) SIS AIIELI PP IS TS

1 PP I IS IS LSS I LI IR PSS

V Credits

&

*Cragits®

same
MAL

v

owaer
FALSE

v

activer
NAL

close?
ML

v

esipcted Rem
186147

lecatiea
1228 384

v

sstivets method
/Ciose

dese methed

v
e wethed

\-4

Ny msthed
(<e<Pict But...

€ O3/15copy Sum M 21 1993 2218

@EDcreaits

diapisy
) e

@ACredits/show credits 1:1

£1772/7727421 17411212 FEI 11 P)ISEIIIIE

U Fieid

i .1
<E§<Ei<E'<E

iﬂﬁgqﬁg

<t

i
§

(I3 I3 JE W

E03/1Scopy Sum Mer 21, 19983 22:18

&
(1

~—y

<Form>

NI\

@Form/save form 1:1huild form 1:1

SSSLLIIIIIIIIIIPIII SIS 1212 PS1S11TS.

SIIIIIR[P1IIII LTI I IEESI 14171117

K 03/13 copy Sun Mer 21, 1990 22118

E2Form/ssve form 1:1bulld form 1:1set file info 1:1

isrila2s

LI LIPS ILIT IS IS IS PEIEL L8

@3Form/collect data 1:1

SIS EIIIE IS IS SIS SIS IS,

)

@Form/collect data 3]

27 LI SLILI SIS LI IIAAT I PIIS IS SIS

@Form/detauit position 1:}

SLLIIIIL IS IE LIS I PSS IS

€ 03/150apy Sen M 21 1993 2215

@Form/defsuit position |:icsicuiate position defaults 1:2

2720017000005 s

cetem ¥ Posiion = |1 -1 -1 -1
R S40gN ¢ Gt
position, eise 4O NOtANG.

offest
vaiue

)

§1. 111 -

@Form/default position t:1caiculate position defaults 2:2

@D+ omsaetaa posaion 1:1 calcume posiion detmts 1:2vertcel deplacement 1.1

e 0

PRSI LIS II LS o 1 PL IS P8 OIS SIS LI P TRELE PSS

Form/add fietd 1:t

SIIIII1IIIIIIIII IS SN ITIIIIIIS IS,

- €03/15copy Sam Mw 20, 1993 2213

@Form/reset t:1

resat the sttviates of class Farm,

WINCH 8CtS a8 § Lo PICeNONSeT for
fleld ams.

R)

§1 () ™ FALSE)

@Form/reset temp 1:1

T]

Foset the JTUrdutes Of Claee Form,

WhiCh 8C78 86 & e PISCSROIEY for
fied auts.

§31.("00= ()" FALSE MmAL)

@3Form/read form 1:1

SIIAIII IS SIS SIS

EiForm/tield info 1:1

411017 P 1 IIEIIRI SIS IF ST IS

K 03/1S copy Sun Mwr 21, 1999 22:13

Form/init 1:1

L1k s PRIR LI ETECE LIS P 1S 7010004

Form/draw 1:2

S/ LIIIIIIIILSIIIIPIIIIIE AL IIIIIIS

Qaform/draw 2:2

R T R

1P LIS L SIS EILIIS ISP

CForm/draw 1:2get field positions 1:2

)

@Form/draw 1:2get field positions 2:2

L]

Posnion

T

R 03/15 00py Sum Mar 1V, 1992 2218

E2Form/draw 1:2get field positions 1:2extract info 1:1

repince Form stuributes Eth
wWwaned Faw>

&JForm/zeroize 1:1

R

IIIIIITIIPIIIAI L) AP 1981000007270

H03/1S eopy Sam My 20,1983 2218

V Diatog

®

e

m
|

!
-»; > 1] i

|u|7||

m

I|l72.ll

v

amtivite mathed

*/Close®

v

¥

6
oy mattes

{ «<Toxt>> <.

v
Rem st

Eoiatog

K 0)/1500py Sun Mar 21, 1999 22138

@B0isiog/confirm 1:1

TIIIIIISEIILII I PIRIIIIILIIII NI L1 02

Z20ialog/confirm 1:1show confirm dialog 1:1

oxt

PIIIIII IS 82 PIIIIIIIISILIIEIIF I

@Boistag/confirm 1:1show confirm dialog 1:1display text 1:1

EA0isiog/confirm 1:tshow confirm dialog 1:1display pict 1:1

St the resowrce fumber of the daiog
pictre 1o Gepisy & warming icon {yind
Sgn) v the dieiog box

WON/ IS copy Sam My 2V, V99D 22113

@ADisiog/aiert 1:1

2172271777719 1L III LIS IS SRS IA AL

B3oialog/slert t:ishow alert dialog 1:)

»
ALY
FILLILISIL 42 ILLILIRIILLIPILI P2/ FIIS 2

@A0iaing/slert t:ishow atert dialog 1:1display pict 1:1

9t the rEsOUCE MUMbEr Of the disiog
picture to dsplay an elert icon N the
aslog dox

SLIIIIIIII27 12 7I LIPS IIIIIAIE S 17,

EZoislog/slert 1:1show alert dialog 1:1display tent 1:1

L7171 IIISEIRIIIIL IS IR LSS IIIIIIT IS,

O)

@20ialog/errar 1:1

R

K 03/1Scopy Sen M 21. 1993 2218

@Z20isiog/error 1:1show error dialog 1:1

text

22 £ DAL S P PSS IS S ARSI

20ialog/error 1:1show error dislog 1:1display teut 1:1

SILIPIIIIIIIIIILIIIII LI IAIIIIIIPIIT

E20islog/error 1:1show error dialog 1: display pict 1:1

S0t The resOWes mavder of the disiog
pictwe to daplay an ervor ioon (stop
sign with & hand In k) i the diaiog box

S1IPILETIIIAIIII LI 80270007900 777

@Z30istog/warning 1:1

W

tent

7L 70 LEL IS RIS e S II I PIE

K 0)/1Scopy Sun e 21,1993 2213

CB0islog/waming !:1show waming dialog 1:1

)

Z20islog/waming 1:1show warning dialog t:1dispiay pict 1:1

o8t the resowrcs mumber of the dislog
pcture to depley 8 warveng joon (ywid
sign) & the dislog Sox

@B0isiog/ciose 1:1

947771210 I IS ERI ISP IR P12 1P IIIIT

SLPILIFIIIIIIT 11 24SIIIEI 1S 017 F S

@Z0iatag/dialog type 1:t

S/LEEIILIIIISI 27772 PIIIIII111I711S,

SISITIILELISII IO IS IIITIL IS IOIAT AR

€ 03/15copy Sam Mer 27, 1993 22118

@0ialog/dialeg type 1:issiect dialog type 1:4

SIPRIIIIIIIIFIIFIES P AP TSI IS E RIS

@30ialog/dialog type 1:iselect dialog type 2:4

SPIIIII LIS IIIIIII PRSI IIIIIIIIII LIS

E20islog/dislag type 1:iselect disiog type 3:4

)

e e e

E304si0g/dialog type 1:1select dislog type 4:4

MO 13 copy S Mar 21,1990 2213

EZ20islog/disiog type 1:1select dialog type 2:4show confirm dialog 1:1

Y R)

@0isiog/dislog type 1:1select dialog type 3:4show error dialog t:1

DL IIII I LRSS LIPS P LI IS s

ZZ0isiog/dialog type 1:1select diaiog type 4:4show warning dialog 1:}

text

R R

@2Dialog/disiog type 1:1select dialog type 1:4show alert dialog 1:1display pict 1:1

S0 THE FOSOUCe Mumler Of the disiog
picture to Gapisy on wert oM B the
aslog box

2P IIITIIIIZIFIIIIIISIAPS ST IIIIIS S

Z20wiog/ sniog type 11 seisct $usog type 1:4show stert guiog 111 dispiey text 1.1

PIIIEIEISRPISIIIEIIIII TS I9 I P17 47T

K 03/1S copy Sun Mar 21, 1998 2218

DIIIIEL 1 PIEIIIITITILI IS E SR80

CD0wiog/saing type 1:1ssict quiog Type 2:4show confirm Galog 11 dpley pict 11

W

m‘*

CDowos/ saicg typs 1 1ssiect ¢:sing tyPe 3.49h0w erOr Susog ! 1 Smpily Bict T 1

D

cwnayw>

08t The MSOWTS Mumher of the deiog
sictre to dopisy an ervor ison (sop
PN WRh & RIS N) I the Gelog box

€03/15 oopy Sam Mar 2V, 1993 2218

@20umng/smog type 1:1981Ct Gming type 4:4 SRow Wamig GI0g 111 crepley text 11

S11112/712702030 170 HPEPS 1124070777

@0niog/siaiog type 1:15ect Iog type 4:4SMOW wamng Giaiog 1:1 dupisy pict 171

@A0islog/beep 1:1

S/ FIIIISEIIS LS LIS IIIELS S IEI 72128

SIIIIIIIPIIIIIII ISP 2IIIFILINI LI T

EO03/15 copy Sam Mar 20, 1993 2218

V Design Form

of

<ije i<§

3
H

le. ‘GE
!

L7

g 2 !QE C

€t

M ON/tS copy Sam Mr 21, 1993 2218

s @ smm { e

9t name
B] e [B) s,
ow fiskd Wpet @ 'O Wser salpction from
open fie daiog
ja1 e
Gosign Mol

g depley dma
r@j typs for stoise 1‘! :Wiﬂe'
st typs pepup Wm" :,, r‘:‘ for reletion whch
menw. * St mwimte PP poexs i Retanon
POP-p e

@0esign Form/design heip 1:1

@0esign Form/set type pop-up 1:}

retrisve dats type
10r S relation which
APPOws in the Artriute
POP-p mony

K03/13 copy Sum Mw 21, V992 22:18

]

EB0esign Form/set type pop-up 1:1retrieve data type 1:1

<> srine []
mme Setition

(2220 eoign Form/eet type popup 1:1mtieve €ata type 1 1 metch aTTiOWe Rame 1)

P1SIIIILOIPIP IS0 D IR

i o matoh » foune.
the neme wi be
CURPUL On the

OB OMpUt ber
terminal

MOV 1S eopy Gm Mw 20, 1993 2218

GB0esign Form/read db 1:1

<Wntiow>

o Usw itislize the poPp Mmerus

— by Gspleying U Bt Of relsbons.

the sttributes for the st relston
e relstion ¥, SRd the asta type
Of the firt sctrbate in the seribute

Z20esign Form/resd db 1:1get db name 1:)

SILIPIPIIIIIIEIII S IAI IS LIS 050,

Z30esign Form/resd db 1:1set relation pop-up 1:1

K 03/15 eopy Sem Mar 21, 1993 2218

@30esign Form/read db 1:1get attributes 1:1

EB0esign Form/read db 1:1get data type 1:1

ZDesign Form/bulld form 1:1

S1LEPIIIIIIIIIEIIII IS EIE OIS

EO)1Scopy Sum Mer2) 1993 2218

Z30esign Form/bulld form 1:1build farm 1:)

SSI0B 10 g R e 2 KPR R 00 1

R s

@D0esign Form/bulld form 1:1bulld farm 1:1set file info 1:1

SLLIIIIIS SIS TSI EIIIIIL 17007k

R

esign Form/get name 1:1

R R)

W O3/1Scopy Sam Mar 21, 1998 2218

ZA0esign Form/get name 1:1activate text fieid 1:1

LTI IS IIII ISR IIIII LS PSS

ZR0esign Form/get name 1:1retrieve associated data 1:)

LAI I IIIIP IS TI ISP)OS TS

§1. ("Fierd Type® Rettion” “Aviomte” Dets Type® ‘Fom® Fom Sixe”)

le.ﬂm 1:1retitve 8500CHLEE ENtE 1 .1 PANE ¢Oit wREOW 1 1 Qot window Rew vaues 1)

S IIILEIRIIIIII IR 11T SN IO IE,

K03/1Scopy Sun Mar 21,1983 2218

G230 egn Fomn/gex name 1:1retiisve sssosiuted G915 1:1upmate ask window 11 get @oa 1:2

$1. (Teition’ ‘Attrawts® Oms Type® Font" ‘Fom Size")

B0 esign Form/get name 1:)retrieve 50s0amead @ts 1 1update o0k Wingow) 1 gat dets 2:2

2) IS ST III RIS LIS II OIS IS IR0 S

20 s Formuget name 1:1/Dieve S500aated @3 1:1uPaate adit window 1:1 g8t Guta 1:2set POD-up teplsy 1.1

R T s

DIITIIIII IS 1P 7IPI P PSS F P IIIEL 10

Z20esign Form/okay edit field 1:1

R

<WAngow>

Zzrepiace o e eva 7771

SIP1 0PI 1L RIS IR G AP ILIIIIAIIIT S 1y

€ 03/1Scopy Sam Mar 21, 1993 2218

0esign Form/okay edit fieid 1:iget old name 1:2

Z30esign Form/okey edit fieid 1:1get oid name 2:2

3esign Form/okay edit field t:1reset text fieid 1:2

212117 0I TIPS EES SRS FI IS RIS LRI

<Wingow>

visinier

oStive?

©20esign Form/okay edit fieid 1:1reset text field 2:2

L

<Window>

K 03/1S copy Sam Mur 21, V999 2218

Z20esign Form/okay edit field 1:1repisce old field data 1:1

P T R

@oesign Form/okey edit field 1:1repiace old fieid data 1:1update display 1:1

DI PIIIIIII RIS IR IS8R0

00 es9n Fommvokay et it 1 Ymplace oid feld 6812 1) Wpeste Mispisy 1) get CUTeNt fiwid names 1.1

SPIBIIEIIIIRI LI IIII LS EIIIPLIIIIIIT,

B0 e0ign Fom/onsy sdit fias 1:Vreplace ol el Sota 1:1updats dispisy 1:1update scrod kst 111

SSPIIPIIIIIIIIIIIIIIIIIS IS0 IS

MO/ 1S copy S Mar 21, 1998 2215

EB0esign Form/get fleid gata 1:1

71 P2 IPIII) IS AT IRIII IS OIS AN S0

§1. CFiaid Nawe® "Fisld Type® Reistion® *Attriate” “Dats Type® Fom® Fom Sixe”)

Gasesign Form/get fieid data 1:1get data 1:1

extract vewe -
from pop-w . aBject » wot 8
mony oo ceeeeeees L4 POP-P Moy

$1. (Meistion” “Attrluts” ‘Deta Type® Fonr' Fom Sie")

EBDesign Form/get field data):tget dats 1:1get usiue 2:2

€ 03/13 0opy Sam Mar 21, 1999 22:13

@A0esign Form/ge! field aata 1:1get data 1:iget value 1:2check for nul) 1:2

2T I IIIIIITIPIS b I s I OCIES PIT AL SS9 S A

the ueer did ROt explicity
select s vo Om the
POP-UD MU - s the
Ve of the SEIrMRe Deing
expmned » ‘C°. e wi
TeMS M an GTOY, 00 SOt
e value 10 the Gefault
(fwst) veam.

Z30esign Form/get field data 1:1get data 1:1get ualue 1:2check for nuli 2:2

W

wvelus s mot 0",
90 pase the velue vy

R

Z0esign Form/add fieid 1:2

R i)

<WinDw>

add feid to
atrdane *fiolme*
n class “Tewy*

SITIEEIIIII P AIPIEEL EI10I LI 111011

Z20esign Form/add field 2:2

e form. This case fres t0
ol wpicating the fisid in
the Fioks List sttriowte.

MO/ 1S 00y Sam Mav 21, 1993 2218

@20esign Form/add field 1:21ield lsting 1:2

E30esign Form/add field 1:2lield Usting 2:2

L

<Wingiow>

arrer
text

$1. Thet feid asme & Sressy » we.

C20esign Form/add fieid 1:2activste input box 1:1

adesign Form/add fietd 1:21ieid listing 1:2get Nst 1:1

B0V 13 oapy fam W 2V, 1999 2248

Z30esign Form/add fieid 1:2field Nsting 1:2siready In list? 1:2

@A0esign Form/add field 1:2fieid listing 1:2already in list? 2:2

R g0

Z20esign Form/add field 1:2field listing 1:2already in Ust? 1:2faund? 2:2

R G

The ISt becomes empty,
90 the fald NEMS wae
aot found. ol e el

€ 03/15 copy Sun Mwr 21,1992 22193

£30esign Form/collect data 1:1

SITIIIIIIIIIIEIIII L2120 E I 2577100

@0esign Form/coliect data 1:iget data 131

TOLEILEEE1OIIIIIPTPIIErIIe010000s00s

Design Form/reset form 1:1

$1. (5 O = FaLse)

20esign Form/new form 1:1

SILIPIIIIIIIIP) 1001 0S 1 P) R 107

SILIIIIIIIIIILEIIIIIP I IS 1sf 7T 07

EO03/150opy Sam Mar 21, 1993 2218

CB0esign form/new form 1:inew form instance 1:1

@A0esign Form/cancel dialog 1:1

§1. Cancel "Demgn Form® aperstion?

@0esign Form/delete name 1:2

LS ILIIIIIS Y

20esign Form/delete name 2:2

2/ PIIIIISI IS I SIS LIS ARII I AL

<WiIndow> <Window Event

E03/1S copy Sum, Mar 21, 1993 22118

CB0esign Form/delete name |:2remove name from field Hst 1:2

@20esign Form/delete name 1:2remove name from field list 2:2

R RRRD

<vAngow>

EB0esign Form/name from Hst 1:2

ED0esign Form/name from lst 2:2

W O03/1Scopy Sum Mur 21,1999 2218

CB0esign Form/name from list 1:2get Hst 1:1

2Designh Form/name from list 2:2alert beep 1:1

@20esign Form/name from list 2:2blank out field name 1:1

2 %

@0esign Form/close 1:1

R i

M O3/15c0py Sum Mar 21,1903 2218

CB0esign Form/update Nst 1:1

_

T

Z20esign Form/update Nst 1:1get fieid names 3:1

SIIIIIII LIP